دورة العام 2022 الاستثنائية الإثنين 29 آب 2022 امتحانات الشهادة الثانوية العامة فرع علوم الحياة وزارة التربية والتعليم العالي المديرية العامّة للتربية دائر ة الامتحانات الرسميّة

(S)

الاسم: الرقم: مسابقة في مادة الفيزياء المدة: ساعة ونصف

This exam is formed of three obligatory exercises in three pages. The use of non-programmable calculator is recommended.

Exercise 1 (7 pts)

Mechanical oscillations

A mechanical oscillator consists of a block (S) of mass m and a spring of negligible mass and force constant k = 20 N/m. The spring is connected from one of its ends to a fixed support A. (S) is attached to the other end of the spring and it may slide without friction on a horizontal support (Doc. 1).

At equilibrium, G, the center of mass of (S), coincides with the origin O of the x-axis.

At the instant $t_0 = 0$, G is at O and we launch (S) with a velocity $\vec{v}_0 = v_0 \vec{i}$; thus, (S) undergoes mechanical oscillations with an amplitude X_m .

At an instant t, the abscissa of G is $x = \overline{OG}$ and the algebraic value of its velocity is $v = x' = \frac{dx}{dt}$.

The aim of this exercise is to study for this oscillator the effect of v_0 on the oscillation amplitude X_m . Take:

- the horizontal plane passing through G as a reference level for gravitational potential energy;
- $g = 10 \text{ m/s}^2 \text{ and } \pi^2 = 10.$

1) Theoretical study

- **1.1)** Write the expression of the mechanical energy ME of the system (Oscillator , Earth) in terms of x, m, k and v.
- **1.2)** Determine the second order differential equation that governs the variation of x.
- **1.3**) Deduce the expression of the proper (natural) period T_0 of the oscillations in terms of m and k.

2) Experimental study

An appropriate device gives the elastic potential energy EPE of the oscillator as a function of time for two different experiments, experiment 1 and experiment 2 (Doc. 2).

- **2.1**) Use the graphs of document 2 in order to:
 - **2.1.1**) justify that the oscillations of (S) are undamped.
 - **2.1.2**) copy and then complete the following table:

	Experiment 1	Experiment 2
The maximum value of EPE		
The value of the period T_E of EPE		

- **2.2**) Show that m = 0.5 kg knowing that $T_0 = 2T_E$.
- **2.3)** Show that $X_{m(2)} = 2 X_{m(1)}$, where $X_{m(1)}$ and $X_{m(2)}$ are the amplitudes of the oscillations in experiments 1 and 2 respectively.
- **2.4)** Determine the values of v_0 for the two experiments.
- **2.5**) Deduce whether X_m increases, decreases, or remains the same as v_0 increases.

Exercise 2 (6.5 pts)

Motion of a hockey puck

The purpose of this exercise is to study the motion of a hockey puck (M).

(M), taken as a particle of mass m = 170 g, can slide on a horizontal ice rink. A hockey player hits puck (M) with his stick from point A (Doc. 3).

Take the horizontal plane passing through (M) as a reference level for gravitational potential energy.

1) The collision between (M) and the stick occurs in a very short time. Choose the correct sentence out of the three following sentences.

Sentence 1: During this collision, the linear momentum and the kinetic energy of the system [Stick, (M)] are necessarily conserved.

Sentence 2: During this collision, the linear momentum of the system [Stick , (M)] is conserved but the kinetic energy of this system is not necessarily conserved.

Sentence 3: During this collision, the linear momentum of the system [Stick , (M)] is not necessarily conserved but the kinetic energy of this system is necessarily conserved.

- 2) Just after the collision, (M) is launched from point A with a velocity $\vec{v}_A = 18 \vec{i}$ (m/s). Puck (M) moves on the ice rink along an x-axis, and it stops at point B after travelling a distance AB = 54 m during a time Δt (Doc. 3).
 - **2.1**) Calculate the mechanical energy of the system [(M), Earth] at A and then at B.
 - **2.2**) Deduce that (M) is submitted to a friction force \vec{f} during its motion between A and B.
 - **2.3**) Given that the value f of \vec{f} is constant. Deduce that f = 0.51 N.
 - **2.4**) Name the external forces acting on (M) between A and B, and then draw, not to scale, a diagram for these forces.
 - **2.5**) Show that the sum of these forces is $\sum \vec{F}_{ext} = -0.51 \vec{i}$ (N).
 - **2.6**) Determine the linear momenta of (M), « \vec{P}_A » at point A and « \vec{P}_B » at point B.
 - **2.7**) Deduce the variation $\Delta \vec{P}$ of the linear momentum of (M) during Δt .
 - **2.8)** Calculate Δt knowing that $\Delta \vec{P} = (\sum \vec{F}_{ext}) \Delta t$.

Exercise 3 (6.5 pts)

Electromagnetic induction

The purpose of this exercise is to determine the direction of the induced current in a circular loop by two different methods.

Consider a circular conducting loop of radius r = 10 cm and resistance $R = 2 \Omega$. The loop is placed in a uniform magnetic field \vec{B} .

1) Document 4 shows three different cases.

1 st case	2 nd case	3 rd case		
The plane of the loop is perpendicular to the magnetic field lines of \vec{B} .	The plane of the loop is parallel to the magnetic field lines of \vec{B} .	The plane of the loop is perpendicular to the magnetic field lines of \vec{B} .		
$\begin{array}{c} & & \\$		+ × × × × ×		
Doc. 4				

Match each of the following sentences 1, 2 and 3 to its appropriate case. Justify.

Sentence 1: The magnetic flux through the loop is zero.Sentence 2: The magnetic flux through the loop is positive.Sentence 3: The magnetic flux through the loop is negative.

2) Consider the first case of document 4. During the time interval [0, 2 s], the value B of the magnetic field \vec{B} decreases with time according to the relation:

$$B = -0.04 t + 0.8$$
 (SI)

- **2.1**) A current is induced in the loop during the time interval [0, 2s]. Justify.
- 2.2) Apply Lenz's law in order to specify the direction of the induced current.
- **2.3**) Determine the expression of the magnetic flux crossing the loop as a function of time.
- 2.4) Deduce the value of the induced electromotive force « e ».
- 2.5) The current carried by the loop is given by the relation $i = \frac{e}{R}$. Deduce the value and the direction of « i ».
- **2.6**) Compare the direction of the induced current obtained in part (2.5) to that obtained in part (2.2).

امتحانات الشهادة الثانوية العامة فرع علوم الحياة

الاسم:	
الرقم:	

مسابقة في مادة الفيزياء المدة: ساعة ونصف

Exercise 1 : Mechanical oscillations (7 pts)				
	Part	t Answer		Mark
1	1.1		$ME = KE + EPE = \frac{1}{2}mv^{2} + \frac{1}{2}kx^{2}$	
	1.2		Friction is neglected, then the mechanical energy is conserved. Or: The sum of the works done by the nonconservative forces is zero, then ME is conserved. Then, $\frac{dME}{dt} = 0$, so $m v v' + k x x' = 0$ { $v = x'$ and $v' = x''$ } $v (m x'' + k x) = 0$, but $v = 0$ is rejected, so $m x'' + k x = 0$; therefore, $x'' + \frac{k}{m}x = 0$	1
	1.3 The differential equation is of the form: $x'' + \omega_0^2 x = 0$ with $\omega_0 = \sqrt{\frac{k}{m}}$ $T_0 = \frac{2\pi}{\omega_0}$, then $T_0 = 2\pi \sqrt{\frac{m}{k}}$		The differential equation is of the form: $x'' + \omega_0^2 x = 0$ with $\omega_0 = \sqrt{\frac{k}{m}}$ $T_0 = \frac{2\pi}{\omega_0}$, then $T_0 = 2\pi \sqrt{\frac{m}{k}}$	1
	1		$EPE_{max} = \frac{1}{2} k X_m^2 = constant.$ k is constant, then X _m is constant; therefore, the oscillations are undamped.	0.5
	2.1	2	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0.5 0.5
	2.2	$T_{0} = 2 T_{E} = 2 (0.5) = 1 s$ $T_{0} = 2 \pi \sqrt{\frac{m}{k}} , \text{ then } T_{0}^{2} = 4 \pi^{2} \frac{m}{\kappa} , \text{ so } m = \frac{k T_{0}^{2}}{4\pi^{2}}$ $m = \frac{20 \times 1}{4 \times 10} , \text{ hence } m = 0.5 \text{ kg}$		0.5
2	2.3		$ \begin{array}{l} \text{Experiment 1 : EPE}_{max} = 0.1 = \frac{1}{2} \text{ k } X_{m(1)}^2 \dots \text{ eq(1)} \\ \text{Experiment 2 : EPE}_{max} = 0.4 = \frac{1}{2} \text{ k } X_{m(2)}^2 \dots \text{ eq(2)} ; \text{Dividing eq(2) by eq(1) gives:} \\ \frac{0.4}{0.1} = \frac{X_{m(2)}^2}{X_{m(1)}^2} , \text{ then } 4 = (\frac{X_{m(2)}}{X_{m(1)}})^2 , \text{ hence } 2 = \frac{X_{m(2)}}{X_{m(1)}} \\ \text{Therefore,} X_{m(2)} = 2 \text{ X}_{m(1)} \end{array} $	
	2.4		$ \begin{array}{lll} ME = constant & , then & ME = EPE_{max} = KE_{max} & , so & EPE_{max} = \frac{1}{2} \ m \ v_0^2 \\ Experiment \ 1 : & 0.1 = \frac{1}{2} \ (0.5) \ v_{0(1)}^2 & , then & v_{0(1)} = 0.63 \ m/s \\ Experiment \ 2 : & 0.4 = \frac{1}{2} \ (0.5) \ v_{0(2)}^2 & , then & v_{0(2)} = 1.26 \ m/s \end{array} $	
	2.5	2.5 v_0 in experiment 2 is greater than v_0 in experiment 1 ($v_{0(2)} > v_{0(1)}$) and $X_{m(2)} > 2 X_{m(1)}$; therefore, as v_0 increases X_m increases.		0.5 0.5

Ex	Exercise 2: Motion of a hockey puck (6.5 pts)			
I	Part Answer		Mark	
1		Sentence 2	0.5	
	2.1	$\begin{split} GPE_A &= GPE_B = 0 \text{ since } (M) \text{ is at the reference level.} \\ ME_A &= KE_A + GPE_A = \frac{1}{2} \text{ m } v_A^2 + 0 = \frac{1}{2} \times 0.17 \times 18^2 \text{, then} ME_A = 27.54 \text{ J} \\ KE_B &= 0 \text{ since } (M) \text{ stops at point } B. \\ ME_B &= KE_B + GPE_B = 0 + 0 \text{, then} ME_B = 0 \end{split}$	0.75 0.25	
	2.2	$ME_B < ME_A$, then (M) is submitted to a friction force.	0.25	
	2.3	$\Delta ME = W_{\vec{f}} = \vec{f} \cdot \overrightarrow{AB} , \text{ then } ME_B - ME_A = -f \times AB$ 0-27.54 = -f × 54 , hence $f = 0.51 \text{ N}$	1	
2	2.4	Forces acting on (M) :The weight mgThe normal force \vec{N} exerted by the ice rinkThe friction force \vec{f}	0.5 0.5	
	2.5	$\sum \vec{F}_{ext} = m\vec{g} + \vec{N} + \vec{f} , \text{ but } m\vec{g} + \vec{N} = \vec{0}$ Then, $\sum \vec{F}_{ext} = \vec{f} = -f\vec{1} = -0.51\vec{i} $ (N)	0.75	
	2.6	$ \vec{P}_A = m \vec{v}_A = 0.17 \times 18 \vec{1} , \text{ then } \vec{P}_A = 3.06 \vec{1} \text{ (kg.m/s)} $ $ \vec{P}_B = m \vec{v}_B = m (\vec{0}) , \text{ then } \vec{P}_B = \vec{0} $	0.75 0.25	
	2.7	$\Delta \vec{P} = \vec{P}_{B} - \vec{P}_{A} = \vec{0} - 3.06 \vec{i}$, then $\Delta \vec{P} = -3.06 \vec{i}$ (kg.m/s)	0.5	
	2.8	$\Delta t = \frac{\Delta \vec{P}}{\sum \vec{F}_{ext}} = \frac{-3.06 \ \vec{i}}{-0.51 \ \vec{i}} \text{, then} \Delta t = 6 \ \text{s}$	0.5	

Exercise 3 (6.5 pts) Electromagnetic induction		
Part	Answer	Mark
1	Sentence 1 corresponds to the 2 nd case, because: • $\phi = \vec{B} \cdot \vec{n} S = B S \cos(\vec{B}, \vec{n}) = B S \cos 90^o = 0$ • <u>or</u> the plane of the loop is parallel to the field lines • <u>or</u> the field lines do not cross the loop	0.5
	Sentence 2 corresponds to the 1 nd case, because: • the angle between the unit vector \vec{n} and \vec{B} is zero • $\underline{\mathbf{or}} \ \mathbf{\phi} = \mathbf{B} \ \mathbf{S} \ \cos 0^o = \mathbf{B} \ \mathbf{S} \ (1)$, but B and S are positive ; therefore, $\mathbf{\phi}$ is positive.	0.5
	Sentence 3 corresponds to the 3 rd case, because: • the angle between the unit vector \vec{n} and \vec{B} is 180° • $\underline{\text{or}} \phi = B \text{ S } \cos 180^{\circ} = -B \text{ S}$, but B and S are positive ; therefore, ϕ is negative.	0.5
2.1	During [0, 2s], the magnitude B of \vec{B} changes, then the loop is crossed by a variable magnetic flux; therefore, the loop becomes the seat of induced emf. The loop forms a closed circuit, then it carries electric current.	
2.2	During [0, 2s], B decreases, then the direction of the induced magnetic field is the same as that of \vec{B} in order to oppose the decrease in B. According to the right hand rule, the induced current passes in the loop in the chosen positive sense (clockwise).	0.75
2.3	$ \begin{aligned} \varphi &= \vec{B} \cdot \vec{n} S = B S \cos \left(\vec{B} , \vec{n} \right) = B S \cos 0^o = B S = B \pi r^2 \\ \varphi &= (-0.04 t + 0.8) \times \pi \times (0.1)^2 \\ \varphi &= -4\pi \times 10^{-4} t + 8\pi \times 10^{-4} (SI) \end{aligned} $	1
2.4	$e = -\frac{d\phi}{dt} = -(-4\pi \times 10^{-4})$, then $e = 4\pi \times 10^{-4} V$	1
2.5	$i = \frac{e}{R} = \frac{4\pi \times 10^{-4}}{2} = 6.3 \times 10^{-3} A$ i > 0, then the current is in the chosen positive sense (Clockwise).	1
2.6	The direction is the same in the two parts.	0.5