الرقم:
المدة: سناعة ونصف

This exam is formed of three obligatory exercises in three pages.
 The use of non-programmable calculator is recommended.

Exercise 1 (7 pts)

Mechanical oscillations

A mechanical oscillator consists of a block (S) of mass m and a spring of negligible mass and force constant $k=20 \mathrm{~N} / \mathrm{m}$.
The spring is connected from one of its ends to a fixed support A.
(S) is attached to the other end of the spring and it may slide without friction on a horizontal support (Doc. 1).

At equilibrium, G, the center of mass of (S), coincides with the origin O of the x -axis.
At the instant $t_{0}=0$, G is at O and we launch (S) with a velocity $\vec{v}_{0}=v_{0} \overrightarrow{1}$; thus, (S) undergoes mechanical oscillations with an amplitude X_{m}.
At an instant t, the abscissa of G is $x=\overline{\mathrm{OG}}$ and the algebraic value of its velocity is $v=x^{\prime}=\frac{d x}{d t}$.
The aim of this exercise is to study for this oscillator the effect of v_{0} on the oscillation amplitude X_{m}. Take:

- the horizontal plane passing through G as a reference level for gravitational potential energy;
- $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and $\pi^{2}=10$.

1) Theoretical study

1.1) Write the expression of the mechanical energy ME of the system (Oscillator , Earth) in terms of $\mathrm{x}, \mathrm{m}, \mathrm{k}$ and v.
1.2) Determine the second order differential equation that governs the variation of x.
1.3) Deduce the expression of the proper (natural) period T_{0} of the oscillations in terms of m and k .
2) Experimental study

An appropriate device gives the elastic potential energy EPE of the oscillator as a function of time for two different experiments, experiment 1 and experiment 2 (Doc. 2).
2.1) Use the graphs of document 2 in order to:
2.1.1) justify that the oscillations of (S) are undamped.
2.1.2) copy and then complete the following table:

	Experiment 1	Experiment 2
The maximum value of EPE		
The value of the period T_{E} of EPE		

2.2) Show that $m=0.5 \mathrm{~kg}$ knowing that $\mathrm{T}_{0}=2 \mathrm{~T}_{\mathrm{E}}$.
2.3) Show that $X_{m(2)}=2 X_{m(1)}$, where $X_{m(1)}$ and $X_{m(2)}$ are the amplitudes of the oscillations in experiments 1 and 2 respectively.
2.4) Determine the values of v_{0} for the two experiments.
2.5) Deduce whether X_{m} increases, decreases, or remains the same as v_{0} increases.

Exercise 2 (6.5 pts)

Motion of a hockey puck

The purpose of this exercise is to study the motion of a hockey puck (M).
(M), taken as a particle of mass $\mathrm{m}=170 \mathrm{~g}$, can slide on a horizontal ice rink. A hockey player hits puck (M) with his stick from point A (Doc. 3).
Take the horizontal plane passing through (M) as a reference level for gravitational potential energy.

1) The collision between (M) and the stick occurs in a very short time. Choose the correct sentence out of the three following sentences.
Sentence 1: During this collision, the linear momentum and the kinetic energy of the system [Stick, (M)] are necessarily conserved.
Sentence 2: During this collision, the linear momentum of the system [Stick, (M)] is conserved but the kinetic energy of this system is not necessarily conserved.
Sentence 3: During this collision, the linear momentum of the system [Stick , (M)] is not necessarily conserved but the kinetic energy of this system is necessarily conserved.
2) Just after the collision, (M) is launched from point A with a velocity $\overrightarrow{\mathrm{v}}_{\mathrm{A}}=18 \overrightarrow{\mathrm{i}}(\mathrm{m} / \mathrm{s})$. Puck (M) moves on the ice rink along an x-axis, and it stops at point B after travelling a distance $A B=54 \mathrm{~m}$ during a time $\Delta \mathrm{t}$ (Doc. 3).
2.1) Calculate the mechanical energy of the system [(M), Earth] at A and then at B.
2.2) Deduce that (M) is submitted to a friction force \vec{f} during its motion between A and B.
2.3) Given that the value f of \vec{f} is constant. Deduce that $f=0.51 \mathrm{~N}$.
2.4) Name the external forces acting on (M) between A and B, and then draw, not to scale, a diagram for these forces.
2.5) Show that the sum of these forces is $\sum \overrightarrow{\mathrm{F}}_{\mathrm{ext}}=-0.51 \overrightarrow{\mathrm{i}}(\mathrm{N})$.
2.6) Determine the linear momenta of $(\mathrm{M}),<\overrightarrow{\mathrm{P}}_{\mathrm{A}} »$ at point A and $« \overrightarrow{\mathrm{P}}_{\mathrm{B}} »$ at point B .
2.7) Deduce the variation $\Delta \overrightarrow{\mathrm{P}}$ of the linear momentum of (M) during $\Delta \mathrm{t}$.
2.8) Calculate $\Delta \mathrm{t}$ knowing that $\Delta \overrightarrow{\mathrm{P}}=\left(\sum \overrightarrow{\mathrm{F}}_{\mathrm{ext}}\right) \Delta \mathrm{t}$.

Exercise 3 (6.5 pts)

Electromagnetic induction

The purpose of this exercise is to determine the direction of the induced current in a circular loop by two different methods.
Consider a circular conducting loop of radius $\mathrm{r}=10 \mathrm{~cm}$ and resistance $\mathrm{R}=2 \Omega$. The loop is placed in a uniform magnetic field $\overrightarrow{\mathrm{B}}$.

1) Document 4 shows three different cases.

$1^{\text {st }}$ case	$2^{\text {nd }}$ case	$3^{\text {rd }}$ case The plane of the loop is perpendicular to the magnetic field lines of $\overrightarrow{\mathrm{B}}$.The plane of the loop is parallel to the magnetic field lines of $\overrightarrow{\mathrm{B}}$.
The plane of the loop is perpendicular to the magnetic field lines of $\overrightarrow{\mathrm{B}}$.		
${\hline \multirow{9}{}}{ } }$		$\overrightarrow{\mathrm{~B}}$

Match each of the following sentences 1, 2 and 3 to its appropriate case. Justify.
Sentence 1: The magnetic flux through the loop is zero.
Sentence 2: The magnetic flux through the loop is positive.
Sentence 3: The magnetic flux through the loop is negative.
2) Consider the first case of document 4 . During the time interval $[0,2 \mathrm{~s}]$, the value B of the magnetic field $\overrightarrow{\mathrm{B}}$ decreases with time according to the relation:

$$
B=-0.04 t+0.8 \quad \text { SI) }
$$

2.1) A current is induced in the loop during the time interval $[0,2 s]$. Justify.
2.2) Apply Lenz's law in order to specify the direction of the induced current.
2.3) Determine the expression of the magnetic flux crossing the loop as a function of time.
2.4) Deduce the value of the induced electromotive force «e».
2.5) The current carried by the loop is given by the relation $i=\frac{e}{R}$. Deduce the value and the direction of «i».
2.6) Compare the direction of the induced current obtained in part (2.5) to that obtained in part (2.2).

Exercise 3 (6.5 pts) Electromagnetic inductio		
Part	Answer	Mark
1	Sentence 1 corresponds to the $2^{\text {nd }}$ case, because: - $\phi=\vec{B} \cdot \vec{n} \mathrm{~S}=\mathrm{B} \mathrm{S} \cos (\vec{B}, \vec{n})=\mathrm{B} \mathrm{S} \cos 90^{\circ}=0$ - or the plane of the loop is parallel to the field lines - or the field lines do not cross the loop Sentence 2 corresponds to the $1^{\text {nd }}$ case, because: - the angle between the unit vector \vec{n} and \vec{B} is zero - $\underline{\text { or }} \phi=\mathrm{BS} \cos 0^{\circ}=\mathrm{BS}(1) \quad$, but B and S are positive ; therefore, ϕ is positive. Sentence 3 corresponds to the $3^{\text {rd }}$ case, because: - the angle between the unit vector \vec{n} and \vec{B} is 180° - $\underline{\text { or }} \phi=\mathrm{B} S \cos 180^{\circ}=-\mathrm{BS} \quad$, but B and S are positive ; therefore, ϕ is negative.	0.5 0.5 0.5
2.1	During [$0,2 \mathrm{~s}$], the magnitude B of $\overrightarrow{\mathrm{B}}$ changes, then the loop is crossed by a variable magnetic flux; therefore, the loop becomes the seat of induced emf. The loop forms a closed circuit, then it carries electric current.	0.75
2.2	During [$0,2 \mathrm{~s}$], B decreases, then the direction of the induced magnetic field is the same as that of \vec{B} in order to oppose the decrease in B. According to the right hand rule, the induced current passes in the loop in the chosen positive sense (clockwise).	0.75
2.3	$\begin{align*} & \phi=\vec{B} \cdot \vec{n} \mathrm{~S}=\mathrm{B} \mathrm{~S} \cos (\vec{B}, \vec{n})=\mathrm{B} \mathrm{~S} \cos 0^{o}=\mathrm{B} \mathrm{~S}=\mathrm{B} \pi r^{2} \\ & \phi=(-0.04 \mathrm{t}+0.8) \times \pi \times(0.1)^{2} \\ & \phi=-4 \pi \times 10^{-4} \mathrm{t}+8 \pi \times 10^{-4} \quad \text { (SI) } \tag{SI} \end{align*}$	1
2.4	$\mathrm{e}=-\frac{d \varphi}{d t}=-\left(-4 \pi \times 10^{-4}\right) \quad$, then $\mathrm{e}=4 \pi \times 10^{-4} \mathrm{~V}$	1
2.5	$\mathrm{i}=\frac{\mathrm{e}}{\mathrm{R}}=\frac{4 \pi \times 10^{-4}}{2}=6.3 \times 10^{-3} \mathrm{~A}$ $\mathrm{i}>0$, then the current is in the chosen positive sense (Clockwise).	1
2.6	The direction is the same in the two parts.	0.5

