مسابقة في مادة الفيزياء الاسم: المدة: ساعة ونصف الرقم:

This exam is formed of three obligatory exercises in three pages. The use of non-programmable calculator is recommended.

Exercise 1 (7 pts)

Mechanical oscillations

A mechanical oscillator consists of a block (S) of mass m = 50 g and a massless spring of force constant k.

The horizontal spring is fixed from one of its ends to a fixed support A. (S) is attached to the other end of the spring and can move without friction on a horizontal surface (Doc. 1).

At equilibrium, the center of mass G of (S) coincides with the origin O of the x-axis.

(S) is shifted from its equilibrium position by a displacement x_0 and then it is released without initial velocity at an instant $t_0 = 0$. (S) then performs mechanical oscillations.

At an instant t, the abscissa of G is $x = \overline{OG}$ and the algebraic value of its velocity is $v = x' = \frac{dx}{dt}$.

The aim of this exercise is to determine the maximum speed attained by G. Take:

- the horizontal plane containing G as the reference level for gravitational potential energy;
- $\pi^2 = 10$.
- 1) The mechanical energy ME of the system (Oscillator Earth) is conserved. Why?
- 2) Write the expression of ME in terms of m, v, k and x.
- 3) Determine the second order differential equation in x that governs the motion of G.
- 4) Deduce, in terms of m and k, the expression of the proper (natural) period T_0 of the oscillations.
- **5**) An appropriate device shows x as a function of time (Doc. 2).
 - **5.1**) Referring to document 2, indicate the values of T_0 and x_0 .
 - **5.2**) Deduce the value of k.
 - **5.3**) Prove that the mechanical energy of the system (Oscillator Earth) is $ME = 6.25 \times 10^{-2} \text{ J}.$
 - **5.4)** Using document 2, indicate an instant at which the elastic potential energy of the spring is zero.
 - **5.5**) Determine the maximum speed attained by G.

Exercise 2 (6 pts)

Studying the motion of an object

Consider:

- a rail AOB located in a vertical plane composed of two straight parts: a horizontal part AO and an inclined part OB making an angle $\alpha = 30^{\circ}$ with the horizontal;
- two objects (S_1) and (S_2) taken as particles of same mass m = 80 g;
- a massless spring (R), of force constant k = 200 N/m and natural length ℓ_0 , fixed from one of its ends to a support at A with the other end free.

Take:

- the horizontal plane containing O as the reference level for gravitational potential energy;
- $g = 10 \text{ m/s}^2$.

1) Launching particle (S₁)

In order to launch (S_1) , it is placed against the free end of the spring, the spring is compressed by a distance d, and then the system [Spring - (S_1)] is released from rest (Doc.3).

When the spring returns to its natural length ℓ_0 , (S_1) leaves the spring with a velocity \overrightarrow{V}_1 parallel to AO . After launching, (S_1) moving with the velocity \overrightarrow{V}_1 , collides head-on with (S_2) which is placed initially at rest on the rail AO.

Just after the collision, (S_1) stops and (S_2) moves with a velocity \overrightarrow{V}_2 parallel to AO and of magnitude $V_2 = 5$ m/s.

 (S_1) and (S_2) move without friction on the rail AO.

- **1.1**) Apply the law of conservation of linear momentum to show that the magnitude of \vec{V}_1 is $V_1 = 5$ m/s.
- **1.2)** Deduce that the collision between (S_1) and (S_2) is elastic.
- **1.3**) Determine the value of d.

2) Motion of (S₂) on the inclined part OB

At the instant $t_0 = 0$, (S_2) starts from O on the inclined part OB with a velocity $\vec{V}_0 = V_0 \ \dot{i} = 5 \ \dot{i}$ (m/s), where \dot{i} is the unit vector along the x-axis parallel to OB. On this part, (S_2) is submitted to a friction force \vec{f} of constant magnitude f and of direction opposite to its motion.

- **2.1**) Name the external forces acting on (S_2) during its motion along the track OB.
- 2.2) Show that the sum of the external forces acting on (S_2) during its upward motion along OB is: $\Sigma \vec{F} = -(f + mgsin\alpha) \hat{i}$.
- **2.3**) The expression of the linear momentum of (S_2) during its upward motion along OB is:

$$\vec{P} = (-0.9 t + 0.4) \dot{i}$$
 (SI).

Knowing that $\frac{d\vec{P}}{dt} = \Sigma \vec{F}$, determine f.

Exercise 3 (7 pts)

Electromagnetic induction

The aim of this exercise is to determine the direction of the induced current in a square-shaped loop by two methods.

For this aim, consider a square-shaped loop ABCD, of side a=10 cm and resistance r=2 Ω , is placed in a uniform magnetic field \vec{B} , whose magnitude varies with time. The direction of \vec{B} is perpendicular to the plane of the loop (Doc. 4).

Document 5 shows, during the time interval [0, 4 s], the magnitude B of \overrightarrow{B} as a function of time.

- 1) An induced current flows in the loop during the time interval [0, 4 s]. Justify.
- 2) Apply Lenz's law to specify the direction of the induced current in the loop.
- 3) Prove that the expression of B during the time interval [0, 4 s] is: B = -0.1t + 0.4 (SI).
- **4**) Take into consideration the chosen positive direction indicated on document 4, determine, as a function of time, the expression of the magnetic flux crossing the loop.
- 5) Deduce the value of the induced electromotive force « e ».
- 6) The induced current in the loop is given by $i = \frac{e}{r}$. Deduce the value and the direction of i.
- 7) Compare the direction of the induced current obtained in part 6 with that obtained in part 2.

مسابقة في مادة الفيزياء أسس التصحيح

Exercise 1 (7 pts)

Mechanical oscillations

	Part	Answer	Mark
	1	Friction is negligible, then the mechanical energy of the system is conserved. (Or the sum of the works done by the non-conservative forces is zero, then the mechanical energy is conserved).	0.25
	2	$ME = KE + EPE = \frac{1}{2} m v^2 + \frac{1}{2} kx^2$ $ME = constant , then \frac{dME}{dt} = 0 , so m v v' + k x x' = 0, hence v (m x'' + k x) = 0$	0.5
	3	ME = constant , then $\frac{dME}{dt} = 0$, so $m \ v \ v' + k \ x \ x' = 0$, hence $v \ (m \ x'' + k \ x) = 0$ $v = 0 \text{ is rejected} \text{, then} \qquad x'' + \frac{k}{m} x = 0$	1
	4	The differential equation is of the form: $x'' + \omega_0^2 \ x = 0$, with $\omega_o = \sqrt{\frac{k}{m}}$ $T_0 = \frac{2\pi}{\omega_o} \qquad ; \text{ therefore, } T_0 = 2\pi\sqrt{\frac{m}{k}}$	1.5
	5.1	$T_0 = 0.2 \text{ s}$ and $x_0 = 5 \text{ cm}$	1
	5.2	$0.2 = 2\pi \sqrt{\frac{0.05}{k}}$ $k = 50 \text{ N/m}$	1
5	5.3	When the speed is zero, the elongation is maximum, then: $ME = KE + EPE = 0 + EPE = \frac{1}{2} kX^2_{max}$ $ME = 0.5 \times 50 \times 0.05^2 = 0.0625 \text{ J} = 6.25 \times 10^{-2} \text{ J}$	0.75
	5.4	t = 0.05 s or $t = 0.15 s$ or $t = 0.25 s$	0.25
	5.5	When G passes through O, its speed is maximum. Then: $ME = KE + EPE = KE + 0 = \frac{1}{2} mV^2_{max}$ $0.0625 = 0.5 \times 0.05 \times (V)_{max}^2 \; ; \; therefore, \; V_{max} = 1.58 \; m/s$	0.75

Exercise 2 (6 pts)

Study the motion of an object

Part		Answer	Mark
1	1.1	$ \vec{P}_{J.B.C} = \vec{P}_{J.A.C} $ $ m\vec{V}_1 + \vec{0} = \vec{0} + m\vec{V}_2 \ , \ \vec{V}_1 = \vec{V}_2 $ then, $ V_1 = 5 \ m/s $	1.5
	1.2	System [(S ₁), (S ₁)] The collision is elastic if $KE_{system(before)} = KE_{system(after)}$ $KE_{(before)} = KE_{(S1)} + KE_{(S2)} = \frac{1}{2} mV_1^2 + 0 = \frac{1}{2} \times 0.08 \times 5^2 + 0 = 1 \text{ J}$ $KE_{(after)} = KE_{(S1)} + KE_{(S2)} = 0 + \frac{1}{2} mV_2^2 = 0 + \frac{1}{2} \times 0.08 \times 5^2 = 1 \text{ J}$ Therefore, the collision is elastic.	1
	1.3	Apply the law of conservation of mechanical energy of the system [Oscillator- Earth] $ME_{(R) \text{ is compressed by } d} = ME_{(R) \text{ is in its initial length}},$ (KE + GPE + EPE) (R) is compressed by $d = (KE + GPE + EPE)$ (R) is in its initial length $0 + \frac{1}{2}kd^2 + 0 = \frac{1}{2}mV_1^2 + 0 + 0,$ $\frac{1}{2} \times 200 \times d^2 = \frac{1}{2} \times 0.08 \times 5^2$ then $d = 0.1$ m = 10 cm	1.5
2	2.1	The forces acting on (S ₂) on OB are: mg: its weight, N: Normal reaction f: friction	0.75
	2.2	$\begin{split} \Sigma \vec{F} &= m \vec{g} + \vec{N} + \vec{f}, \\ \text{Component along the direction } \overrightarrow{Ox} \colon \Sigma \vec{F} = - \text{ mgsin} \alpha \vec{i} + 0 \vec{i} - f \vec{i} \\ \Sigma \vec{F} &= - \left(f + \text{ mgsin} \alpha \right) \vec{i} \end{split}$ $\text{Or } : \Sigma \vec{F} = m \vec{g} + \vec{N} + \vec{f} = - \text{ mg sin} \alpha \vec{i} + \text{ mg cos} \alpha \vec{J} - N \vec{J} - f \vec{i} \\ \text{But } : \text{ mg cos} \alpha \vec{j} - N \vec{j} = 0 \text{ , then, } \Sigma \vec{F} = - \left(f + \text{ mgsin} \alpha \right) \vec{i} \end{split}$	0.75
	2.3	$\frac{d\vec{P}}{dt} = \Sigma \vec{F},$ $-0.9 \vec{1} = -(f + mgsin\alpha)\vec{1}$ $-0.9 = -f - 0.08 \times 10 \times 0.5$ Therefore, $f = 0.5 \text{ N}$	0.5

Exercise 3 (7 pts)

Electromagnetic induction

Part	Answer	Mark
1	During the interval [0 s, 4 s], B varies with time, then the magnetic flux varies with time, therefore an emf (e) is induced in the circuit. The circuit is closed, then a current is induced in the circuit.	1
2	During the interval $[0 \text{ s}, 4 \text{ s}]$, B decreases with time, then the direction of the induced magnetic field as that of \overrightarrow{B} to oppose this decrease (Lenz's law). Using the right hand rule, the induced current flows in the loop in the positive direction (clockwise).	1
3	In the interval [0s, 4s], B(t) varies linearly with time : B = at + b $a = slope = \frac{0-0.4}{4-0} = -0.1 \text{ T/s}$ $0 = -0.1 \times 4 + b b = 0.4 \text{ T} \text{then} B = -0.1t + 0.4$	1
4	$\phi = BS\cos(\vec{B} \ \vec{n}) = (-0.1t + 0.4) \times (0.1)^2 \times \cos(0)$ $\phi = -10^{-3} t + 4 \times 10^{-3} (SI)$	1
5	$e = -\frac{d\phi}{dt} = 10^{-3} \text{ V}$	1
6	$e = -\frac{d\emptyset}{dt} = 10^{-3} V$ $i = \frac{e}{r} = \frac{10^{-3}}{2} = 0.5 \times 10^{-3} A$ $i > 0$, then the induced current flows in the positive direction (clockwise).	1.5
7	The are the same.	0.5