الالاسم::

مسـابقة في مادة الفيزيـاء
المدة: سناعة ونصف

This exam is formed of three obligatory exercises in three pages. The use of non-programmable calculator is recommended.

Exercise 1 (7 pts)

Mechanical oscillations

A mechanical oscillator consists of a block (S) of mass $\mathrm{m}=50 \mathrm{~g}$ and a massless spring of force constant k . The horizontal spring is fixed from one of its ends to a fixed support A. (S) is attached to the other end of the spring and can move without friction on a horizontal surface (Doc. 1).
At equilibrium, the center of mass G of (S) coincides with the origin O of the x -axis.
(S) is shifted from its equilibrium position by a displacement x_{0} and

then it is released without initial velocity at an instant $\mathrm{t}_{0}=0$. (S) then performs mechanical oscillations.
At an instant t, the abscissa of G is $x=\overline{O G}$ and the algebraic value of its velocity is $v=x^{\prime}=\frac{d x}{d t}$.
The aim of this exercise is to determine the maximum speed attained by G .
Take:

- the horizontal plane containing G as the reference level for gravitational potential energy;
- $\pi^{2}=10$.

1) The mechanical energy ME of the system (Oscillator - Earth) is conserved. Why?
2) Write the expression of ME in terms of m, v, k and x.
3) Determine the second order differential equation in x that governs the motion of G.
4) Deduce, in terms of m and k, the expression of the proper (natural) period T_{0} of the oscillations.
5) An appropriate device shows x as a function of time (Doc. 2).
5.1) Referring to document 2 , indicate the values of T_{0} and x_{0}.
5.2) Deduce the value of k.
5.3) Prove that the mechanical energy of the system (Oscillator - Earth) is $\mathrm{ME}=6.25 \times 10^{-2} \mathrm{~J}$.
5.4) Using document 2 , indicate an instant at which the elastic potential energy of the spring is zero.
5.5) Determine the maximum speed
 attained by G .

Exercise 2 (6 pts)

Studying the motion of an object

Consider:

- a rail AOB located in a vertical plane composed of two straight parts: a horizontal part AO and an inclined part OB making an angle $\alpha=30^{\circ}$ with the horizontal;
- two objects $\left(\mathrm{S}_{1}\right)$ and $\left(\mathrm{S}_{2}\right)$ taken as particles of same mass $\mathrm{m}=80 \mathrm{~g}$;
- a massless spring (R), of force constant $k=200 \mathrm{~N} / \mathrm{m}$ and natural length ℓ_{0}, fixed from one of its ends to a support at A with the other end free.
Take:
- the horizontal plane containing O as the reference level for gravitational potential energy;
- $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

1) Launching particle (\mathbf{S}_{1})

In order to launch $\left(S_{1}\right)$, it is placed against the free end of the spring, the spring is compressed by a distance d , and then the system [Spring - $\left(\mathrm{S}_{1}\right)$] is released from rest (Doc.3).
When the spring returns to its natural length $\ell_{0},\left(S_{1}\right)$ leaves the spring with a velocity $\overrightarrow{\mathrm{V}}_{1}$ parallel to AO .
After launching, (S_{1}) moving with the velocity $\overrightarrow{\mathrm{V}}_{1}$, collides head-on with $\left(\mathrm{S}_{2}\right)$ which is placed initially at rest on the rail AO.
Just after the collision, $\left(\mathrm{S}_{1}\right)$ stops and $\left(\mathrm{S}_{2}\right)$ moves with a velocity $\overrightarrow{\mathrm{V}}_{2}$ parallel to AO and of magnitude $\mathrm{V}_{2}=5 \mathrm{~m} / \mathrm{s}$.
$\left(\mathrm{S}_{1}\right)$ and $\left(\mathrm{S}_{2}\right)$ move without friction on the rail AO.

1.1) Apply the law of conservation of linear momentum to show that the magnitude of \vec{V}_{1} is $V_{1}=5 \mathrm{~m} / \mathrm{s}$.
1.2) Deduce that the collision between $\left(\mathrm{S}_{1}\right)$ and $\left(\mathrm{S}_{2}\right)$ is elastic.
1.3) Determine the value of d.
2) Motion of $\left(\mathbf{S}_{\mathbf{2}}\right)$ on the inclined part OB

At the instant $t_{0}=0,\left(S_{2}\right)$ starts from O on the inclined part $O B$ with a velocity $\vec{V}_{0}=V_{0} \dot{\mathrm{i}}=5 \dot{\mathrm{i}}(\mathrm{m} / \mathrm{s})$, where \dot{i} is the unit vector along the x-axis parallel to $O B$. On this part, $\left(S_{2}\right)$ is submitted to a friction force \vec{f} of constant magnitude f and of direction opposite to its motion.
2.1) Name the external forces acting on $\left(S_{2}\right)$ during its motion along the track $O B$.
2.2) Show that the sum of the external forces acting on $\left(\mathrm{S}_{2}\right)$ during its upward motion along OB is:
$\Sigma \overrightarrow{\mathrm{F}}=-(\mathrm{f}+\mathrm{mg} \sin \alpha) \dot{\mathrm{i}}$.
2.3) The expression of the linear momentum of $\left(\mathrm{S}_{2}\right)$ during its upward motion along OB is:
$\overrightarrow{\mathrm{P}}=(-0.9 \mathrm{t}+0.4) \dot{\mathrm{i}}(\mathrm{SI})$.
Knowing that $\frac{d \overrightarrow{\mathrm{P}}}{\mathrm{dt}}=\Sigma \overrightarrow{\mathrm{F}}$, determine f .

Exercise 3 (7 pts)

Electromagnetic induction

The aim of this exercise is to determine the direction of the induced current in a square-shaped loop by two methods.
For this aim, consider a square-shaped loop ABCD , of side $\mathrm{a}=10 \mathrm{~cm}$ and resistance $\mathrm{r}=2 \Omega$, is placed in a uniform magnetic field \vec{B}, whose magnitude varies with time. The direction of \vec{B} is perpendicular to the plane of the loop (Doc. 4).
Document 5 shows, during the time interval $[0,4 \mathrm{~s}]$, the magnitude B of \vec{B} as a function of time.

1) An induced current flows in the loop during the time interval [$0,4 \mathrm{~s}]$. Justify.
2) Apply Lenz's law to specify the direction of the induced current in the loop.
3) Prove that the expression of B during the time interval $[0,4 \mathrm{~s}]$ is: $B=-0.1 \mathrm{t}+0.4$ (SI).
4) Take into consideration the chosen positive direction indicated on document 4 , determine, as a function of time, the expression of the magnetic flux crossing the loop.
5) Deduce the value of the induced electromotive force «e».
6) The induced current in the loop is given by $i=\frac{e}{r}$. Deduce the value and the direction of i.
7) Compare the direction of the induced current obtained in part 6 with that obtained in part 2 .

مسابقة في مـادة الفيزيـاء

أسس التصحيح

Exercise 1 (7 pts)

Mechanical oscillations

	Part	Answer	Mark
	1	Friction is negligible, then the mechanical energy of the system is conserved. (Or the sum of the works done by the non-conservative forces is zero, then the mechanical energy is conserved).	0.25
	2	$\mathrm{ME}=\mathrm{KE}+\mathrm{EPE}=\frac{1}{2} m \mathrm{v}^{2}+\frac{1}{2} \mathrm{kx}^{2}$	0.5
	3	$\mathrm{ME}=\mathrm{constant}$, then $\frac{\mathrm{dME}}{\mathrm{dt}}=0$, so $\mathrm{mvv}^{\prime}+\mathrm{kx} \mathrm{x}^{\prime}=0$, hence $\mathrm{v}\left(\mathrm{mxx}^{\prime \prime}+\mathrm{kx}\right)=0$ $\mathrm{v}=0$ is rejected , then $\mathrm{x}^{\prime \prime}+\frac{k}{m} x=0$	1
	4	The differential equation is of the form: $\mathrm{x}^{\prime \prime}+\omega_{0}^{2} \mathrm{x}=0$, with $\omega_{0}=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$ $\mathrm{T}_{0}=\frac{2 \pi}{\omega_{\mathrm{o}}} \quad ;$ therefore, $\quad \mathrm{T}_{0}=2 \pi \sqrt{\frac{m}{k}}$	1.5
5	5.1	$\mathrm{T}_{0}=0.2 \mathrm{~s}$ and $\mathrm{x}_{0}=5 \mathrm{~cm}$	1
	5.2	$0.2=2 \pi \sqrt{\frac{0.05}{k}} \quad \mathrm{k}=50 \mathrm{~N} / \mathrm{m}$	1
	5.3	When the speed is zero, the elongation is maximum, then: $\begin{aligned} & \mathrm{ME}=\mathrm{KE}+\mathrm{EPE}=0+\mathrm{EPE}=\frac{1}{2} \mathrm{kX}^{2}{ }_{\max } \\ & \mathrm{ME}=0.5 \times 50 \times 0.05^{2}=0.0625 \mathrm{~J}=6.25 \times 10^{-2} \mathrm{~J} \end{aligned}$	0.75
	5.4	$t=0.05 \mathrm{~s}$ or $\mathrm{t}=0.15 \mathrm{~s}$ or $\mathrm{t}=0.25 \mathrm{~s}$.....	0.25
	5.5	When G passes through O , its speed is maximum. Then: $\begin{aligned} & \mathrm{ME}=\mathrm{KE}+\mathrm{EPE}=\mathrm{KE}+0=\frac{1}{2} \mathrm{mV}^{2}{ }_{\max } \\ & 0.0625=0.5 \times 0.05 \times(\mathrm{V})_{\max ^{2}} ; \text { therefore, } \mathrm{V}_{\max }=1.58 \mathrm{~m} / \mathrm{s} \end{aligned}$	0.75

Exercise 2 (6 pts)

Study the motion of an object

Part		Answer	Mark
1	1.1	$\begin{aligned} & \overrightarrow{\mathrm{P}}_{\mathrm{J} . \mathrm{B.C}}=\overrightarrow{\mathrm{P}}_{\mathrm{J} . \mathrm{A} . \mathrm{C}} \\ & \mathrm{~m} \vec{V}_{1}+\overrightarrow{0}=\overrightarrow{0}+\mathrm{m} \overrightarrow{\mathrm{~V}}_{2}, \overrightarrow{\mathrm{~V}}_{1}=\overrightarrow{\mathrm{V}}_{2} \\ & \text { then, } \mathrm{V}_{1}=5 \mathrm{~m} / \mathrm{s} \end{aligned}$	1.5
	1.2	System $\left[\left(\mathrm{S}_{1}\right),\left(\mathrm{S}_{1}\right)\right]$ The collision is elastic if $\mathrm{KE}_{\text {system(before) }}=K E_{\text {system(after) }}$ $\begin{aligned} & \mathrm{KE}_{(\text {before })}=\mathrm{KE}_{(\mathrm{S} 1)}+\mathrm{KE}_{(\mathrm{S} 2)}=\frac{1}{2} \mathrm{mV}_{1}^{2}+0=\frac{1}{2} \times 0.08 \times 5^{2}+0=1 \mathrm{~J} \\ & \mathrm{KE}_{(\text {after })}=\mathrm{KE}_{(\mathrm{S} 1)}+\mathrm{KE}_{(\mathrm{S} 2)}=0+\frac{1}{2} \mathrm{mV}_{2}^{2}=0+\frac{1}{2} \times 0.08 \times 5^{2}=1 \mathrm{~J} \end{aligned}$ Therefore, the collision is elastic.	1
	1.3	Apply the law of conservation of mechanical energy of the system [Oscillator- Earth] $\mathrm{ME}_{(\mathrm{R})}$ is compressed by $\mathrm{d}=\mathrm{ME}_{(\mathrm{R})}$ is in its initial length, $(\mathrm{KE}+\mathrm{GPE}+\mathrm{EPE})_{(\mathrm{R})}$ is compressed by $_{\mathrm{d}}=(\mathrm{KE}+\mathrm{GPE}+\mathrm{EPE})_{(\mathrm{R})}$ is in its initial length $\begin{aligned} & 0+\frac{1}{2} \mathrm{kd}^{2}+0=\frac{1}{2} \mathrm{mV}_{1}^{2}+0+0 \\ & \frac{1}{2} \times 200 \times \mathrm{d}^{2}=\frac{1}{2} \times 0.08 \times 5^{2} \text { then } \mathrm{d}=0.1 \mathrm{~m}=10 \mathrm{~cm} \end{aligned}$	1.5
2	2.1	The forces acting on (S_{2}) on OB are: mg : its weight, $\overrightarrow{\mathrm{N}}$: Normal reaction $\overrightarrow{\mathrm{f}}$: friction	0.75
	2.2	$\Sigma \overrightarrow{\mathrm{F}}=\mathrm{m} \overrightarrow{\mathrm{~g}}+\overrightarrow{\mathrm{N}}+\overrightarrow{\mathrm{f}},$ Component along the direction $\overrightarrow{0 \mathrm{x}}: \Sigma \overrightarrow{\mathrm{F}}=-\mathrm{mg} \sin \alpha \vec{\imath}+0 \vec{\imath}-\mathrm{f} \vec{\imath}$ $\Sigma \vec{F}=-(\mathrm{f}+\mathrm{mg} \sin \alpha) \overrightarrow{\mathrm{I}}$ Or : $\Sigma \vec{F}=m \vec{g}+\vec{N}+\vec{f}=-m g \sin \alpha \vec{\imath}+m g \cos \alpha \overrightarrow{\mathrm{~J}}-\mathrm{N} \overrightarrow{\mathrm{J}}-\mathrm{f} \overrightarrow{\mathrm{I}}$ But : $\mathrm{mg} \cos \alpha \vec{\jmath}-\mathrm{N} \vec{\jmath}=0$, then, $\Sigma \overrightarrow{\mathrm{F}}=-(\mathrm{f}+\mathrm{mg} \sin \alpha) \overrightarrow{\mathrm{i}}$	0.75
	2.3	$\begin{aligned} & \frac{\mathrm{d} \overrightarrow{\mathrm{P}}}{\mathrm{dt}}=\Sigma \overrightarrow{\mathrm{F}}, \\ & -0.9 \overrightarrow{\mathrm{i}}=-(\mathrm{f}+\mathrm{mg} \sin \alpha) \overrightarrow{\mathrm{i}} \\ & -0.9=-\mathrm{f}-0.08 \times 10 \times 0.5 \end{aligned}$ $\text { Therefore, } \mathrm{f}=0.5 \mathrm{~N}$	0.5

Exercise 3 (7 pts)

Electromagnetic induction

Part	Answer	Mark
1	During the interval [$0 \mathrm{~s}, 4 \mathrm{~s}$], B varies with time, then the magnetic flux varies with time, therefore an emf (e) is induced in the circuit. The circuit is closed, then a current is induced in the circuit.	1
2	During the interval [$0 \mathrm{~s}, 4 \mathrm{~s}$], B decreases with time, then the direction of the induced magnetic field as that of \vec{B} to oppose this decrease (Lenz's law). Using the right hand rule, the induced current flows in the loop in the positive direction (clockwise).	1
3	In the interval $[0 \mathrm{~s}, 4 \mathrm{~s}], \mathrm{B}(\mathrm{t})$ varies linearly with time : $\mathrm{B}=\mathrm{at}+\mathrm{b}$ $\begin{aligned} & \mathrm{a}=\text { slope }=\frac{0-0,4}{4-0}=-0,1 \mathrm{~T} / \mathrm{s} \\ & 0=-0.1 \times 4+\mathrm{b} \quad \mathrm{~b}=0.4 \mathrm{~T} \quad \text { then } B=-0.1 \mathrm{t}+0.4 \end{aligned}$	1
4	$\begin{aligned} & \phi=\mathrm{BS} \cos (\vec{B} \vec{n})=(-0.1 \mathrm{t}+0.4) \times(0.1)^{2} \times \cos (0) \\ & \phi=-10^{-3} \mathrm{t}+4 \times 10^{-3} \quad \text { (SI) } \end{aligned}$	1
5	$\mathrm{e}=-\frac{d \phi}{d t}=10^{-3} \mathrm{~V}$	1
6	$\mathrm{i}=\frac{\mathrm{e}}{\mathrm{r}}=\frac{10^{-3}}{2}=0.5 \times 10^{-3} \mathrm{~A}$ i>0, then the induced current flows in the positive direction (clockwise).	1.5
7	The are the same.	0.5

