مسابقة في مادة الفيزياء الاسم: المدة: ساعة ونصف الرقم:

This exam is formed of three obligatory exercises in three pages. The use of non-programmable calculator is recommended.

Exercise 1 (7 pts)

Mechanical oscillator

A mechanical oscillator is constituted of a block (S) of mass M and a spring of negligible mass and force constant k.

The spring, placed horizontally, is connected from one of its extremities to a fixed support A. (S) is attached to the other extremity of the spring and it may slide without friction on a horizontal surface (Doc. 1).

The aim of this exercise is to determine the values of M and k.

At equilibrium, the center of mass G of (S) coincides with the origin O of the x-axis.

(S) is shifted from its equilibrium position in the positive direction and then released without initial velocity at the instant $t_0 = 0$. Thus, (S) performs mechanical oscillations. At an instant t, the abscissa of G is $x = \overline{OG}$ and the algebraic value of its velocity is $v = x' = \frac{dx}{dt}$.

The horizontal plane containing G is considered as a reference level for gravitational potential energy.

- 1) Write, at an instant t, the expression of the mechanical energy ME of the system (Oscillator, Earth) in terms of x, M, k and v.
- 2) Establish the second order differential equation in x that governs the motion of G.
- 3) Deduce that the expression of the proper (natural) period of the oscillations is $T_1 = 2\pi \sqrt{\frac{M}{k}}$.

4) An appropriate device traces x as a function of time (Doc. 2). Referring to document 2, indicate:

- **4.1**) the type of oscillations of G;
- **4.2**) the amplitude X_m of the oscillations;
- **4.3**) the value of T_1 .
- 5) The same experiment is repeated by putting on (S) an object, considered as a particle, of mass m = 50 g. The duration of 10 oscillations becomes $\Delta t = 3.67$ s.
 - **5.1)** Write the expression of the new proper (natural) period T₂ of the oscillations in terms of k, M and m.

5.3) Determine the values of k and M.

Exercise 2 (7 pts)

Charging and discharging a capacitor

♦u (V)

(b)

10

8

6

The aim of this exercise is to study the charging and the discharging of a capacitor.

For this purpose, we set up the circuit of document 3 that includes:

- an ideal battery of electromotive force E = 10 V;
- two resistors of resistances $R_1 = R_2 = 4 \text{ k}\Omega$;
- a capacitor of capacitance C;
- a switch K.

1) Charging the capacitor

The switch K is initially at position (0) and the capacitor is uncharged. At the instant $t_0 = 0$, K is turned to position (1) and the charging process of

the capacitor starts.

At an instant t, plate B of the capacitor carries a charge q and the circuit carries a current i.

An appropriate device allows us to display the voltage $u_{AB} = u_{R_1}$ across the resistor and the voltage $u_{BD} = u_{C}$ across the capacitor.

Curves (a) and (b) of document 4 show these voltages as functions of time.

- **1.1**) Curve (a) represents u_{R_1} and curve (b) represents u_{C} . Justify.
- **1.2)** The time constant of this circuit is given by $\tau_1 = R_1 C$.
 - **1.2.1**) Using document 4, determine the value of τ_1 .
 - **1.2.2**) Deduce the value of C.

1.3) Calculate the time $\langle t_1 \rangle$ needed by the capacitor to practically become completely charged.

2) Discharging the capacitor

The capacitor is completely charged. At an instant taken as a new initial time $t_0\!=\!0$, the switch K is turned to position (2), and the capacitor starts discharging through the resistors of resistances R_1 and R_2 . At an instant t the circuit carries a current i (Doc. 5).

2.1) Show, using the law of addition of voltages, that the differential equation which governs \mathbf{u}_{C} is:

$$RC \; \frac{du_{_C}}{dt} \; + \; u_{_C} = 0 \; \; \text{where} \; R = \; R_{_1} + \; R_{_2} \, . \label{eq:reconstruction}$$

2.2) The solution of this differential equation is of the form: $u_C = E e^{\frac{-\tau}{\tau_2}}$ where τ_2 is the time constant of the circuit of document 5.

Determine the expression of τ_2 in terms of R and C.

2.3) Verify that the time needed by the capacitor to practically become completely discharged is $t_2 = 5 \tau_2$.

3) Duration of charging and discharging the capacitor

Show, without calculation, that $\langle t_2 \rangle$ is greater than $\langle t_1 \rangle$.

Exercise 3 (6 pts)

Characteristics of a coil

In order to determine the inductance L and the resistance r of a coil, we connect it in series with a resistor of resistance $R=30~\Omega$ across a function generator (G) providing an alternating sinusoidal voltage of angular frequency ω .

The circuit thus carries an alternating sinusoidal current of expression $i = I_m \sin(\omega t)$ (Doc. 6).

An oscilloscope allows us to display the voltage $u_{AB} = u_R$ across the resistor and the voltage $u_{BC} = u_L$ across the coil.

The obtained waveforms are shown in document 7.

The adjustments of the oscilloscope are:

- vertical sensitivity for both channels: $S_v = 2 \text{ V/div}$;
- horizontal sensitivity: $S_h = 0.4$ ms/div.
- 1) The voltage u_R represents the image of i. Why?
- 2) Referring to document 7, specify which of the curves, (a) or (b), leads the other.
- 3) Deduce that curve (a) corresponds to u_{AB} .
- 4) Using document 7, determine:
 - **4.1**) the angular frequency ω ;
 - **4.2**) the maximum value I_m of i;
 - **4.3**) the phase difference ϕ between $u_{\scriptscriptstyle L}$ and i.
- 5) Prove that $u_L = 6.8 \sin(\omega t + 0.4\pi)$ (SI).
- 6) Knowing that the voltage across the coil is given by $u_L = r i + L \frac{di}{dt}$, write the expression of u_L in

terms of r, L, ω and t.

7) Using the two expressions of u_L found in parts 5 and 6 and by giving «ωt» two particular values, determine the values of L and r.

N N/	مسابقة في مادة الفيزياء
الأسم:	مسابقه في مادة الفيدياء
• • • • • • • • • • • • • • • • • • • •	معدب کی مدد اسپریت م
	and the second s
ااً. ۾ .	المحتمين المكرمة مناه
الار تلم:	المدة: الماحة والصلاب
الرقم:	المدة: ساعة ونصفٌ

Exercise 1 (7 pts)

Mechanical oscillator

Part		Answer	Note
	1	$ME = KE + EPE = \frac{1}{2} M v^2 + \frac{1}{2} kx^2$	
	The sum of the works done by the non-conservative forces is zero, then the mechanical energy is conserved. (Or: Friction is neglected, then the mechanical energy is conserved). $ ME = constant , \text{ then } \frac{dME}{dt} = 0 , \text{ so } M \text{ v v'} + k \text{ x x'} = 0 , \text{ but } v = x' \text{ and } v' = x'' \\ , \text{ hence } v (M \text{ x''} + k \text{ x}) = 0 \\ v = 0 \text{ is rejected} , \text{ then } \qquad x'' + \frac{k}{M}x = 0 $		1
	3	The differential equation is of the form: $x'' + \omega_0^2 \ x = 0$, with $\omega_o = \sqrt{\frac{k}{M}}$ $T_1 = \frac{2\pi}{\omega_o} \qquad ; \text{ therefore,} \qquad T_1 = 2\pi\sqrt{\frac{M}{k}}$	
4	4.1	Free undamped mechanical oscillations	0.5
	4.2	$X_m = 8 \text{ cm}$	0.5
	4.3	From the curve: $T_1 = 0.1 \pi s = 0.314 s$	0.5
5		$T_2 = 2 \pi \sqrt{\frac{M+m}{k}}$	0.5
	5.2	$T_1^2 = 4 \pi^2 \frac{M}{k} \text{and} \qquad T_2^2 = 4 \pi^2 \left(\frac{M+m}{k}\right)$ $T_2^2 - T_1^2 = 4 \pi^2 \left(\frac{M+m}{k} - \frac{M}{k}\right) = \frac{4 \pi^2 m}{k} , \text{ so} k = \frac{4 \pi^2 m}{\left(T_2^2 - T_1^2\right)}$	1
	5.3	$T_2 = \frac{3.67}{10} = 0.367 \text{ s}$ $k = \frac{4 \pi^2 \times 0.05}{0.367^2 - 0.314^2} \qquad \text{, then} \qquad k = 54.7 \text{ N/m}$ $T_1^2 = 4 \pi^2 \frac{M}{k} \text{ , substituting the value of k into this expression gives:}$ $0.314^2 = 4 \pi^2 \frac{M}{54.7} \qquad \text{; therefore,} \qquad M = 0.1366 \text{ kg} = 136.6 \text{ g}$	0.5 0.5 0.5

Charging and discharging of a capacitor

Part		Answer	Note
1	1.1	Curve (a): $u_{AB} = u_{R_1} = R_1 i$; u_{R_1} is directly proportional to the current in the circuit. During the charging process the current decreases so u_{R_1} decreases. Curve (b): $u_{BD} = u_C = \frac{q}{C}$; During charging process q increases so u_C increases	0.5 0.5
	1.2.1	At $t=\tau_1$: $u_C=0.63~E=6.3~V$ From document 4: $u_C=6.3~V$ at $t=0.4~s$, then $\tau_1=0.4~s$	1
	1.2.2	$ au_1 = R_1 C$, so $C = \frac{ au_1}{R_1} = \frac{0.4}{4000}$, hence $C = 1 \times 10^{-4} \ F = 100 \ \mu F$	0.5
	1.3	$t_1 = 5\tau_1 = 5\times 0.4 \hspace{1cm} \text{, then} \hspace{1cm} t_1 = 2 \text{ s}$	0.5
2	2.1	$\begin{split} u_{BD} &= u_{BA} + u_{AD} \\ u_C &= R_1 i + R_2 i \text{, then} u_C = (R_2 + R_1) i = R i \\ But, i &= -\frac{dq}{dt} = -C\frac{du_C}{dt} \qquad \text{, hence} \qquad u_C = -RC\frac{du_C}{dt} \end{split}$ Therefore, $RC\frac{du_C}{dt} +u_C = 0$	1.5
		$\begin{split} u_C &= E \ e^{\frac{-t}{\tau_2}} \text{, then} \frac{du_C}{dt} = -\frac{E}{\tau_2} \ e^{\frac{-t}{\tau_2}} \end{split}$ Substituting u_C and $\frac{du_C}{dt}$ into the differential equation gives: $R \ C \ (-\frac{E}{\tau_2} \ e^{\frac{-t}{\tau_2}}) + E \ e^{\frac{-t}{\tau_2}} = 0 \qquad \text{, so} \qquad E \ e^{\frac{-t}{\tau_2}} (1 - \frac{R \ C}{\tau_2}) = 0 \end{split}$ $E e^{\frac{-t}{\tau_2}} = 0 \text{ is rejected} \qquad \text{, then} \qquad 1 - \frac{R \ C}{\tau_2} = 0 \qquad \text{, so} \qquad \tau_2 = R \ C$	1.5
	2.3	At $t=5$ τ_2 : $u_C=Ee^{\frac{-5\tau_2}{\tau_2}}=Ee^{-5}\cong 0$, so the capacitor is practically completely. discharged.	0.5
	3	$t_1 = 5 \ R_1 \ C$ and $t_2 = 5 \ R \ C = 5 \ (R_1 + R_2) \ C$ $(R_1 + R_2) > R_1$, then $t_2 > t_1$	0.5

Exercise 3 (6 pts)

Characteristics of a coil

Part		Answer	Note
	1	$u_R=Ri$, but R is a positive constant , then u_R and i are directly proportional ; therefore, u_R is the image of current.	
	2	Curve (b) leads curve (a), since curve (b) becomes maximum before curve (a).	
	3	The voltage across the coil u_L leads u_R (or i). Curve (b) leads curve (a), then curve (a) corresponds to $u_R = u_{AB}$.	
	4.1	$T = 5 \times 0.4 = 2 \text{ ms} = 2 \times 10^{-3} \text{ s}$ $\omega = \frac{2\pi}{T} = \frac{2\pi}{2 \times 10^{-3}} \text{, hence} \omega = 1000 \text{ π rad/s}$	0.25 0.5
4	4.2	Curve (a): $U_{R(max)}=3\times 2=6$ V $U_{R(max)}=R\times I_m \qquad \text{, then} \qquad I_m=\frac{6}{30}=0.2 \text{ A}$	0.25 0.5
	4.3	$\phi = \frac{2\pi d}{D} = \frac{2\pi \times 1}{5}$, then $\phi = 0.4 \pi \text{ rad}$	0.5
	5	From curve (b): $U_{L(max)} = 3.4 \times 2 = 6.8 \text{ V}$, and $u_L = u_L = 0.4\pi \text{ rad}$ $u_L = U_{L(max)} \sin(\omega t + \phi)$; therefore, $u_L = 6.8 \sin(\omega t + 0.4 \pi)$	
	6	$\begin{split} u_L &= ri + L\frac{di}{dt} = rI_m\sin(\omega t) + LI_m\omega\cos(\omega t) \\ u_L &= 0.2r\sin(\omegat) + L(0.2)(1000\pi)\cos(\omega t) = 0.2r\sin(\omega t) + 200\piL\cos(\omega t) (SI) \\ \underline{\mathbf{Or}}u_L &= 0.2r\sin(\omega t) + \omegaL(0.2)\cos(\omega t) (SI) \end{split}$	0.5
	7	$6.8 \sin (\omega t + 0.4 \pi) = 0.2 r \sin (\omega t) + 200 \pi L \cos (\omega t)$ For $\omega t = 0$: $6.8 \sin (0.4 \pi) = 0 + 200 \pi L$, then $L = 0.01 H$ For $\omega t = \frac{\pi}{2} rad$: $6.8 \sin (\frac{\pi}{2} + 0.4 \pi) = 0.2 r + 0$, then $r = 10.5 \Omega$	0.75 0.75