مسابقة في مادة الفيزياء:

This exam is formed of three obligatory exercises in three pages. The use of non-programmable calculator is recommended.

Exercise 1 (7 pts)

Mechanical oscillator

A mechanical oscillator is constituted of a block (S) of mass M and a spring of negligible mass and force constant k.
The spring, placed horizontally, is connected from one of its extremities to a fixed support A. (S) is attached to the other extremity of the spring and it may slide without friction on a
 horizontal surface (Doc. 1).
The aim of this exercise is to determine the values of M and k .
At equilibrium, the center of mass G of (S) coincides with the origin O of the x-axis.
(S) is shifted from its equilibrium position in the positive direction and then released without initial velocity at the instant $\mathrm{t}_{0}=0$. Thus, (S) performs mechanical oscillations. At an instant t , the abscissa of G is $\mathrm{x}=\overline{\mathrm{OG}}$ and the algebraic value of its velocity is $v=x^{\prime}=\frac{d x}{d t}$.
The horizontal plane containing G is considered as a reference level for gravitational potential energy.

1) Write, at an instant t, the expression of the mechanical energy ME of the system (Oscillator, Earth) in terms of $\mathrm{x}, \mathrm{M}, \mathrm{k}$ and v .
2) Establish the second order differential equation in x that governs the motion of G.
3) Deduce that the expression of the proper (natural) period of the oscillations is $T_{1}=2 \pi \sqrt{\frac{\mathrm{M}}{\mathrm{k}}}$.
4) An appropriate device traces x as a function of time (Doc. 2).

Referring to document 2 , indicate:
4.1) the type of oscillations of G;
4.2) the amplitude X_{m} of the oscillations;
4.3) the value of T_{1}.
5) The same experiment is repeated by putting on (S) an object, considered as a particle, of mass $\mathrm{m}=50 \mathrm{~g}$. The duration of 10 oscillations becomes $\Delta t=3.67 \mathrm{~s}$.
5.1) Write the expression of the new proper (natural) period T_{2} of the oscillations in terms of k, M and m .
5.2) Using the expressions of T_{1} and T_{2}, show that

$$
\mathrm{k}=\frac{4 \pi^{2} \mathrm{~m}}{\mathrm{~T}_{2}^{2}-\mathrm{T}_{1}^{2}}
$$

5.3) Determine the values of k and M .

The aim of this exercise is to study the charging and the discharging of a capacitor.
For this purpose, we set up the circuit of document 3 that includes:

- an ideal battery of electromotive force $\mathrm{E}=10 \mathrm{~V}$;
- two resistors of resistances $R_{1}=R_{2}=4 \mathrm{k} \Omega$;
- a capacitor of capacitance C ;
- a switch K.

1) Charging the capacitor

The switch K is initially at position (0) and the capacitor is uncharged. At the instant $\mathrm{t}_{0}=0, \mathrm{~K}$ is turned to position (1) and the charging process of
 the capacitor starts.
At an instant t, plate B of the capacitor carries a charge q and the circuit carries a current i.
An appropriate device allows us to display the voltage $u_{A B}=u_{R_{1}}$ across the resistor and the voltage $\mathrm{u}_{\mathrm{BD}}=\mathrm{u}_{\mathrm{C}}$ across the capacitor.
Curves (a) and (b) of document 4 show these voltages as functions of time.
1.1) Curve (a) represents $u_{R_{1}}$ and curve (b) represents u_{C}. Justify.
1.2) The time constant of this circuit is given by $\tau_{1}=R_{1} C$.
1.2.1) Using document 4 , determine the value of τ_{1}.

1.2.2) Deduce the value of C.

1.3) Calculate the time $<\mathrm{t}_{1} »$ needed by the capacitor to practically become completely charged.

2) Discharging the capacitor

The capacitor is completely charged. At an instant taken as a new initial time $t_{0}=0$, the switch K is turned to position (2), and the capacitor starts discharging through the resistors of resistances R_{1} and R_{2}. At an instant t the circuit carries a current i (Doc. 5).
2.1) Show, using the law of addition of voltages, that the differential equation which governs u_{C} is:

$$
\mathrm{RC} \frac{\mathrm{du}_{\mathrm{C}}}{\mathrm{dt}}+\mathrm{u}_{\mathrm{C}}=0 \text { where } \mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}
$$

2.2) The solution of this differential equation is of the form: $u_{C}=E e^{\frac{-t}{\tau_{2}}}$ where τ_{2}
 is the time constant of the circuit of document 5 .
Determine the expression of τ_{2} in terms of R and C .
2.3) Verify that the time needed by the capacitor to practically become completely discharged is $\mathrm{t}_{2}=5 \tau_{2}$.
3) Duration of charging and discharging the capacitor

Show, without calculation, that $« \mathrm{t}_{2} »$ is greater than $« \mathrm{t}_{1} »$.

Exercise 3 (6 pts)

Characteristics of a coil
In order to determine the inductance L and the resistance r of a coil, we connect it in series with a resistor of resistance $\mathrm{R}=30 \Omega$ across a function generator (G) providing an alternating sinusoidal voltage of angular frequency ω.
The circuit thus carries an alternating sinusoidal current of expression $\mathrm{i}=\mathrm{I}_{\mathrm{m}} \sin (\omega \mathrm{t})($ Doc. 6).
An oscilloscope allows us to display the voltage $u_{A B}=u_{R}$ across the
 resistor and the voltage $\mathrm{u}_{\mathrm{BC}}=\mathrm{u}_{\mathrm{L}}$ across the coil.
The obtained waveforms are shown in document 7 .
The adjustments of the oscilloscope are:

- vertical sensitivity for both channels: $\mathrm{S}_{\mathrm{v}}=2 \mathrm{~V} / \mathrm{div}$;
- horizontal sensitivity: $S_{h}=0.4 \mathrm{~ms} / \mathrm{div}$.

1) The voltage u_{R} represents the image of i. Why?
2) Referring to document 7 , specify which of the curves, (a) or (b), leads the other.
3) Deduce that curve (a) corresponds to $u_{A B}$.
4) Using document 7 , determine:
4.1) the angular frequency ω;
4.2) the maximum value I_{m} of i;
4.3) the phase difference φ between u_{L} and i.
5) Prove that $u_{L}=6.8 \sin (\omega t+0.4 \pi)$ (SI).
6) Knowing that the voltage across the coil is given by $u_{L}=r i+L \frac{d i}{d t}$, write the expression of u_{L} in terms of $\mathrm{r}, \mathrm{L}, \omega$ and t .
7) Using the two expressions of u_{L} found in parts 5
 and 6 and by giving « ω t» two particular values, determine the values of L and r.

دورة العام
r. Y الاثثين Y Y بتموز

امتحانـات الثههادة الثثانوية العامة فرع علوم الحياة

وزارة التربية والتعليم العالي
المديرية العامّة للتربية
دائرة الامتحانـات الرسميّة

الالرقم: الرق:

Exercise 1 (7 pts)

	Part	Answer	Note
	1	$\mathrm{ME}=\mathrm{KE}+\mathrm{EPE}=\frac{1}{2} \mathrm{Mv}^{2}+\frac{1}{2} \mathrm{kx}^{2}$	0.5
	2	The sum of the works done by the non-conservative forces is zero, then the mechanical energy is conserved. (Or: Friction is neglected, then the mechanical energy is conserved). $\mathrm{ME}=\mathrm{constant}$, then $\frac{\mathrm{dME}}{\mathrm{dt}}=0$, so $\quad \mathrm{Mvv}+\mathrm{kxx}^{\prime}=0$, but $v=\mathrm{x}^{\prime}$ and $\mathrm{v}^{\prime}=\mathrm{x}^{\prime \prime}$, hence $v(M x "+k x)=0$ $v=0$ is rejected , then $\quad x^{\prime \prime}+\frac{k}{M} x=0$	1
3		The differential equation is of the form: $x^{\prime \prime}+\omega_{0}^{2} x=0$, with $\omega_{0}=\sqrt{\frac{k}{M}}$ $\mathrm{T}_{1}=\frac{2 \pi}{\omega_{0}} \quad ;$ therefore, $\quad \mathrm{T}_{1}=2 \pi \sqrt{\frac{\mathrm{M}}{\mathrm{k}}}$	1
4	4.1	Free undamped mechanical oscillations	0.5
	4.2	$\mathrm{X}_{\mathrm{m}}=8 \mathrm{~cm}$	0.5
	4.3	From the curve: $\mathrm{T}_{1}=0.1 \pi \mathrm{~s}=0.314 \mathrm{~s}$	0.5
5	5.1	$\mathrm{T}_{2}=2 \pi \sqrt{\frac{\mathrm{M}+\mathrm{m}}{\mathrm{k}}}$	0.5
	5.2	$\begin{aligned} & \mathrm{T}_{1}^{2}=4 \pi^{2} \frac{\mathrm{M}}{\mathrm{k}} \quad \text { and } \quad \mathrm{T}_{2}^{2}=4 \pi^{2} \quad\left(\frac{\mathrm{M}+\mathrm{m}}{\mathrm{k}}\right) \\ & \mathrm{T}_{2}^{2}-\mathrm{T}_{1}^{2}=4 \pi^{2}\left(\frac{\mathrm{M}+\mathrm{m}}{\mathrm{k}}-\frac{\mathrm{m}}{\mathrm{k}}\right)=\frac{4 \pi^{2} \mathrm{~m}}{\mathrm{k}} \quad \text {, so } \quad \mathrm{k}=\frac{4 \pi^{2} \mathrm{~m}}{\left(\mathrm{~T}_{2}^{2}-\mathrm{T}_{1}^{2}\right)} \end{aligned}$	1
	5.3	$\begin{aligned} & \mathrm{T}_{2}=\frac{3.67}{10}=0.367 \mathrm{~s} \\ & \mathrm{k}=\frac{4 \pi^{2} \times 0.05}{0.367^{2}-0.314^{2}} \quad \text {, then } \quad \mathrm{k}=54.7 \mathrm{~N} / \mathrm{m} \\ & \mathrm{~T}_{1}^{2}=4 \pi^{2} \frac{\mathrm{M}}{\mathrm{k}}, \text { substituting the value of } \mathrm{k} \text { into this expression gives: } \\ & 0.314^{2}=4 \pi^{2} \frac{\mathrm{M}}{54.7} \quad \text {; therefore, } \quad \mathrm{M}=0.1366 \mathrm{~kg}=136.6 \mathrm{~g} \end{aligned}$	0.5 0.5 0.5

Part		Answer	Note
1	1.1	Curve (a): $u_{A B}=u_{R_{1}}=R_{1} i ; u_{R_{1}}$ is directly proportional to the current in the circuit. During the charging process the current decreases so $u_{R_{1}}$ decreases. Curve (b) : $u_{B D}=u_{C}=\frac{q}{C}$; During charging process q increases so u_{C} increases	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$
	1.2.1	At $t=\tau_{1}: \quad u_{C}=0.63 \mathrm{E}=6.3 \mathrm{~V}$ From document 4: $u_{C}=6.3 \mathrm{~V}$ at $\mathrm{t}=0.4 \mathrm{~s} \quad$, then $\quad \tau_{1}=0.4 \mathrm{~s}$	1
	1.2.2	$\tau_{1}=\mathrm{R}_{1} \mathrm{C} \quad$, so $\quad \mathrm{C}=\frac{\tau_{1}}{\mathrm{R}_{1}}=\frac{0.4}{4000} \quad$, hence $\quad \mathrm{C}=1 \times 10^{-4} \mathrm{~F}=100 \mu \mathrm{~F}$	0.5
	1.3	$\mathrm{t}_{1}=5 \tau_{1}=5 \times 0.4 \quad$, then $\mathrm{t}_{1}=2 \mathrm{~s}$	0.5
2	2.1	$u_{\mathrm{BD}}=\mathrm{u}_{\mathrm{BA}}+\mathrm{u}_{\mathrm{AD}}$ $u_{C}=R_{1} i+R_{2} i \quad$, then $\quad u_{C}=\left(R_{2}+R_{1}\right) i=R i$ But, $i=-\frac{d q}{d t}=-C \frac{d u_{C}}{d t} \quad$, hence $\quad u_{C}=-R C \frac{d u_{C}}{d t}$ Therefore, $\quad \mathrm{RC} \frac{\mathrm{d} \mathrm{u}_{\mathrm{C}}}{\mathrm{dt}}+\mathrm{u}_{\mathrm{C}}=0$	1.5
	2.2	$u_{C}=E e^{\frac{-t}{\tau_{2}}} \quad$, then $\quad \frac{d u_{C}}{d t}=-\frac{E}{\tau_{2}} e^{\frac{-t}{\tau_{2}}}$ Substituting u_{C} and $\frac{\mathrm{du}_{\mathrm{C}}}{\mathrm{dt}}$ into the differential equation gives: $\begin{array}{ll} R C\left(-\frac{E}{\tau_{2}} e^{\frac{-t}{\tau_{2}}}\right)+E e^{\frac{-t}{\tau_{2}}}=0 \quad \text {, so } \quad E e^{\frac{-t}{\tau_{2}}}\left(1-\frac{R C}{\tau_{2}}\right)=0 \\ E^{\frac{-t}{\tau_{2}}}=0 \text { is rejected } \quad \text {, then } \quad 1-\frac{R C}{\tau_{2}}=0 \quad \text {,so } \quad \tau_{2}=R C \end{array}$	1.5
	2.3	At $\mathrm{t}=5 \tau_{2}: \mathrm{u}_{\mathrm{C}}=\mathrm{E} e^{\frac{-5 \tau_{2}}{\tau_{2}}}=\mathrm{E} e^{-5} \cong 0$, so the capacitor is practically completely. discharged.	0.5
	3	$\begin{array}{ll} \hline \mathrm{t}_{1}=5 \mathrm{R}_{1} \mathrm{C} & \text { and } \quad \mathrm{t}_{2}=5 \mathrm{RC}=5\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \mathrm{C} \\ \left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)>\mathrm{R}_{1} & , \text { then } \quad \mathrm{t}_{2}>\mathrm{t}_{1} \end{array}$	0.5

Part	Answer	Note
1	$\mathrm{u}_{\mathrm{R}}=\mathrm{Ri}$, but R is a positive constant, then u_{R} and i are directly proportional ; therefore, u_{R} is the image of current.	0.5
2	Curve (b) leads curve (a), since curve (b) becomes maximum before curve (a).	0.5
3	The voltage across the coil u_{L} leads u_{R} (or i). Curve (b) leads curve (a), then curve (a) corresponds to $u_{R}=u_{A B}$.	0.5
4.1	$\begin{aligned} & \mathrm{T}=5 \times 0.4=2 \mathrm{~ms}=2 \times 10^{-3} \mathrm{~s} \\ & \omega=\frac{2 \pi}{\mathrm{~T}}=\frac{2 \pi}{2 \times 10^{-3}} \quad, \text { hence } \quad \omega=1000 \pi \mathrm{rad} / \mathrm{s} \end{aligned}$	$\begin{gathered} 0.25 \\ 0.5 \end{gathered}$
$4 \quad 4.2$	$\text { Curve (a): } \begin{aligned} \mathrm{U}_{\mathrm{R}(\max)} & =3 \times 2=6 \mathrm{~V} \\ \mathrm{U}_{\mathrm{R}(\max)} & =\mathrm{R} \times \mathrm{I}_{\mathrm{m}} \quad \text {, then } \quad \mathrm{I}_{\mathrm{m}}=\frac{6}{30}=0.2 \mathrm{~A} \end{aligned}$	$\begin{gathered} 0.25 \\ 0.5 \end{gathered}$
4.3	$\varphi=\frac{2 \pi \mathrm{~d}}{\mathrm{D}}=\frac{2 \pi \times 1}{5} \quad$, then $\quad \varphi=0.4 \pi \mathrm{rad}$	0.5
5	From curve (b): $\quad U_{L(\max)}=3.4 \times 2=6.8 \mathrm{~V} \quad$, and $\quad u_{L}$ leads i by $\varphi=0.4 \pi \mathrm{rad}$ $\mathrm{u}_{\mathrm{L}}=\mathrm{U}_{\mathrm{L}(\max)} \sin (\omega \mathrm{t}+\varphi) \quad ;$ therefore,$\quad \mathrm{u}_{\mathrm{L}}=6.8 \sin (\omega \mathrm{t}+0.4 \pi)$	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$
6	$\begin{align*} & u_{L}=r i+L \frac{d i}{d t}=r I_{m} \sin (\omega t)+L I_{m} \omega \cos (\omega t) \\ & u_{L}=0.2 r \sin (\omega t)+L(0.2)(1000 \pi) \cos (\omega t)=0.2 r \sin (\omega t)+200 \pi L \cos (\omega t) \tag{SI}\\ & \underline{\text { Or }} u_{L}=0.2 r \sin (\omega t)+\omega L(0.2) \cos (\omega t)(S I) \end{align*}$	0.5
7	$6.8 \sin (\omega \mathrm{t}+0.4 \pi)=0.2 \mathrm{r} \sin (\omega \mathrm{t})+200 \pi \mathrm{~L} \cos (\omega \mathrm{t})$ For $\omega \mathrm{t}=0: 6.8 \sin (0.4 \pi)=0+200 \pi \mathrm{~L} \quad$, then $\mathrm{L}=0.01 \mathrm{H}$ For $\omega \mathrm{t}=\frac{\pi}{2} \mathrm{rad}: \quad 6.8 \sin \left(\frac{\pi}{2}+0.4 \pi\right)=0.2 \mathrm{r}+0 \quad$, then $\quad \mathrm{r}=10.5 \Omega$	$\begin{aligned} & 0.75 \\ & 0.75 \end{aligned}$

