دورة العام ٢٠٢٣ العاديّـة	امتحانات الشهادة الثانوية العامة	وزارة التربية والتعليم العالي
الاثنين ١٠ تموز ٢٠٢٣	فرع: علوم الحياة	المديريّة العامّة للتربية
		دائرة الامتحانات الرسميّة
الاسم:	مسابقة في مادة الرياضيات	عدد المسائل: ثلاث
الرقم:	المدة: ساعة ونصف	

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة)

I- (4 points)

In the table below, only one among the proposed answers to each question is correct. Write the number of each question and give, **with justification**, the answer that corresponds to it.

Nº	Questions	Proposed answers		
11.	Questions	а	b	с
1	The solution of the equation $2\ln(x) = \ln(25)$ is	5	$\frac{25}{2}$	-5
2	Consider the function f defined over]e, $+\infty$ [as $f(x) = x - 3 - \frac{3\ln x}{1 - \ln x}$ and denote by (C) its curve in an orthonormal system (O; \vec{i} , \vec{j}). (C) admits two asymptotes with equations	x = 1 and y = x - 3	x = e and y = x	x = -e and y = x - 3
3	The table below is the table of variations of a continuous function f over $[0, +\infty[$. $\frac{x 0 1 e +\infty}{\frac{f'(x) - 0 + 0 -}{f(x)}}$ $\frac{5 -2 3 -1}{f(x) 1 = [1, +\infty[$ by f is	[-2,3]	[-2,-1[]–1 , 3]
4	A code is a number formed of three digits using the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. The number of possible even codes greater than or equal to 300 is	280	350	500

II- (6 points)

During the financial crisis in Lebanon, a study on a group of teachers showed that:

> 30% currently work abroad out of which:

- 40% teach at private schools only.
- 20% teach at public schools only.
- The remaining teachers started working in another domain.

 \succ Out of those who stayed in Lebanon:

- 50% teach at private schools only.
- 40% teach at public schools only.
- The remaining teachers retired and stopped working.

A member from the group is randomly interviewed. Consider the following events:

- A: "The interviewed member currently work abroad"
- R: "The interviewed member teaches at private schools only"
- U: "The interviewed member teaches at public schools only"
- D: "The interviewed member works in another domain"
- N: "The interviewed member is retired and stopped working".

- a) Calculate the probabilities P(A ∩ R) and P(Ā ∩ R).
 b) Verify that P(R) = 0.47.
- 2) Calculate P(U).
- 3) Show that the probability that the interviewed member is still teaching or is working in another domain is 0.93.
- The interviewed member does not teach at private schools. Calculate the probability that the member stayed in Lebanon.
- 5) The group consists of 500 teachers.
 - a) Show that the number of teachers that teach at private schools is 235.
 - b) Three members are interviewed from this group.Calculate the probability of interviewing at least two members who teach at private schools.

III- (10 points)

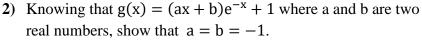
The plane is referred to an orthonormal system (O; \vec{i} , \vec{j}).

Part A

The adjacent curve (G) is the representative curve of a differentiable function g over $]-\infty; +\infty[$.

(G) is tangent to the x-axis at O.

- **1**) Using the curve (G):
 - a) Verify that $g(x) \ge 0$ for all real numbers x.
 - b) The function g' is the derivative of g.Study, according to the values of x, the sign of g'.

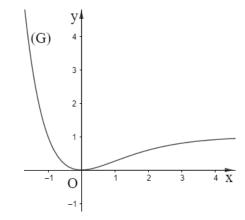


Part B

Consider the function f defined, on \mathbb{R} , as $f(x) = (x + 2)e^{-x} + x$. Denote by (C) the representative curve of f.

Let (D) be the line with equation y = x.

- 1) Determine $\lim_{x \to -\infty} f(x)$ and calculate f(-2.5).
- 2) a) Determine $\lim_{x\to+\infty} f(x)$.
 - **b**) Show that the line (D) is an asymptote to (C).
 - c) Study, according to the values of x, the position of (C) with respect to (D).
- 3) Show that f'(x) = g(x) then set up the table of variations of f.
- 4) a) Show that the equation f(x) = 0 has, on \mathbb{R} , a unique root α .
 - **b**) Verify that $-1.7 < \alpha < -1.6$.
- 5) a) Prove that (C) has an inflection point W whose coordinates are to be determined.
 b) Show that the line (T) with equation y = 2 is tangent to (C) at W.
- 6) Draw (T), (D) and (C).
- 7) Consider the function h defined over]-2, 0[as $h(x) = \frac{\ln(x+2) \ln(-x)}{x}$. Prove that $h(\alpha)$ is a natural number to be determined.



امتحانات الشهادة الثانوية العامة

فرع: علوم الحياة

اسس تصحيح مادة الرياضيات

Ι	Answers	Grade 4 pts
1	$\ln x^{2} = \ln 25$; x > 0 x ² = 25 then x = 5 Answer : a	1
2	$\lim_{\substack{x \to e^+ \\ 0R:}} f(x) = e - 3 - \frac{3}{0^+} = -\infty, \text{ so } x = e \text{ is a vertical asymptote.}$ $\underbrace{OR:}_{\substack{x \to +\infty \\ x \to +\infty}} [f(x) - x] = -3 + 3 = 0, \text{ so } y = x \text{ is an oblique asymptote at } +\infty.$ Answer: b	1
3	f changes variation over $I = [1; +\infty[$, so $f(I) = [min(f); max(f)] = [-2; 3]$. Answer: a	1
4	Number of possible even codes greater or equal to 300 is: $7 \times 10 \times 5 = 350$. Answer: b	1

Π	Answers	Grade 6 pts
1a	$P(A \cap R) = P(A) \times P(R/\overline{A}) = 0.3 \times 0.4 = 0.12$ $P(\overline{A} \cap R) = P(\overline{A}) \times P(R/\overline{A}) = 0.7 \times 0.5 = 0.35$	0.5 0.5
1b	$P(R) = P(A \cap R) + P(\overline{A} \cap R) = 0.12 + 0.35 = 0.47$ verified	0.5
2	$P(U) = P(A \cap U) + P(\overline{A} \cap U) = 0.3 \times 0.2 + 0.7 \times 0.4 = 0.34$	1
3	P(still working in teaching or other domains) = $0.3 + 0.7 \times 0.5 + 0.7 \times 0.4 = 0.93$	1
4	$P(\overline{A}/\overline{R}) = \frac{P(\overline{A}\cap\overline{R})}{P(\overline{R})} = \frac{P(\overline{A}) - P(\overline{A}\cap R)}{1 - P(R)} = \frac{0.7 - 0.35}{1 - 0.47} = \frac{35}{53}$	1
5 a	Number of teachers that teach in private schools = $P(R) \times 500 = 0.47 \times 500 = 235$	0.5
5b	P(at least 2 teachers who teach at private schools) = $\frac{235C2 \times 265C1 + 235C3}{500C3} \approx 0.455$	1

ш	Answers	Grade 10 pts
A1a	Over $]-\infty; +\infty[$, (G) is above the x-axis and intersects it at O, so $g(x) \ge 0$ for all values of x.	
A1b	If $x \in]-\infty; 0[$, (G) is strictly decreasing, so $g'(x) < 0$. If $x \in]0; +\infty[$, (G) is strictly increasing, so $g'(x) > 0$. If $x = 0$, $g'(x) = 0$.	0.5
A2	$g(x) = (ax + b)e^{-x} + 1$ g(0) = 0, gives b + 1 = 0, so b = -1 $g'(x) = (a - ax + 1)e^{-x}$ g'(0) = 0, gives a + 1 = 0, so a = -1	0.5
B 1	$\lim_{x \to -\infty} f(x) = -\infty \times +\infty - \infty = -\infty - \infty = -\infty$ $f(-2.5) \approx -8.59$	0.5 0.25
B2a	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{x+2}{e^x} + x \right) = \lim_{x \to +\infty} \left(\frac{1}{e^x} + x \right) = 0 + \infty = +\infty (\text{using Hopital's rule})$	0.5

	b $\lim_{x \to +\infty} [f(x) - x] = \lim_{x \to +\infty} \frac{x+2}{e^x} = 0 \text{ (proved).}$ Thus (d): y = x is an asymptote to (C).		
B2b			
	$f(x) - y_D = (x + 2)e^{-x}$		
B2c	If $x \in (-\infty; -2[$, (C) is below (D).	1	
Dat	If $x \in \left]-2; +\infty\right[$, (C) is above (D).	•	
	(C) and (D) intersect at the point $(-2; -2)$.		
	$f'(x) = (1 - x - 2)e^{-x} + 1 = (-x - 1)e^{-x} + 1 = g(x)$	0.5	
	So f' and g have the same sign and roots, so $f'(x) \ge 0$.		
B3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$\frac{f'(x) + 0 +}{1 + \infty}$		
	$f(x) \longrightarrow +\infty$	0.5	
B4a	Over $]-\infty$; $+\infty[: f is continuous and strictly increasing from -\infty to +\infty, so (C) cuts the x-$	0.5	
D 4a	axis at one point only, then the equation $f(x) = 0$ has a unique root α .	0.5	
B4b	$f(-1.7) \approx -0.05 < 0$ and $f(-1.6) \approx 0.38 > 0$.	0.5	
D 40	Thus, $-1.7 < \alpha < -1.6$	0.0	
	$f''(x) = g'(x) = xe^{-x}$.		
B5a	Thus, $f''(x)$ vanishes at $x = 0$ and changes sign from negative to positive, so (C) admits at $x = 0$	1	
	0 a point of inflection W of coordinates (0; 2). f'(0) = g(0) = 0, so the tangent to (C) at $x = 0$ is parallel to the x-axis.		
B5b	f(0) = g(0) = 0, so the tangent to (C) at $x = 0$ is parallel to the x-axis. Also, $f(0) = 2$ so the equation of this tangent is $y = 2$.	0.5	
D 50	Thus (T): $y = 2$ is tangent to (C) at W(0, 2).	0.5	
	f(0, y) = 2 is ungent to (c) at $f(0, y)$.		
	5		
	4		
	3 (C)		
B6		1.25	
	x,		
	-4 -3 -2 -1 0 1 2 3 4 5 6		
	-2		
	(D) -3		
	$f(\alpha) = 0$ gives $(\alpha + 2)e^{-\alpha} + \alpha = 0$, then $e^{-\alpha} = \frac{-\alpha}{\alpha+2}$, then $-\alpha = \ln(\frac{-\alpha}{\alpha+2})$,		
B7b	then $\ln(\alpha + 2) - \ln(-\alpha) = \alpha$.	1	
B/D	$\ln(\alpha+2) - \ln(-\alpha) \alpha$	1	
	Therefore, $h(\alpha) = \frac{\ln(\alpha+2) - \ln(-\alpha)}{\alpha} = \frac{\alpha}{\alpha} = 1.$		
	·		