وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسمية

- 81	مسابقة في مادة الرياضيات	- A 1 - 11 - 11 - 1 - 1 - 1 - 1 - 1 - 1
الاسم:	مسابقہ کے مادہ ابر پاکتیات	عدد المسائل: ثلاث
-3	a a contract of the contract o	
ا۴. ۵. ۱۱	301ti / 8	
الرقم:	المدة: ساعة ونصف الساعة	

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (4 points)

In the table below, only one among the proposed answers to each question is correct. Write down the number of each question and give, **with justification**, the corresponding answer.

No	Questions	Answers		
212	Questions	a	b	c
1	Let f be the function given by $f(x) = \frac{\ln(x-2)}{x}$ The domain of definition of f is	[0;+∞[]2;+∞[]0;2[∪]2;+∞[
2	The solution of the equation $ln(x-2) = ln(-x+4)$ is	1	2	3
3	Let f be the function defined over $]0$; $+\infty[$ as $f(x) = \frac{\ln(x)}{x}$. An antiderivative of f is	$\left(\ln(x)\right)^2$	$\frac{\left(\ln(x)\right)^2}{2}$	$2(\ln(x))^2$
4	$\lim_{x \to +\infty} \frac{1 + \ln(x)}{\ln(x)}$ is equal to	0	1	+∞

II- (6 points)

U and V are two urns such that:

- U contains 3 red balls and 5 blue balls.
- V contains 4 red balls and 3 blue balls.

Part A

One ball is randomly selected from U and one ball is randomly selected from V.

- 1) Show that the probability of selecting two red balls is $\frac{3}{14}$.
- 2) Calculate the probability of selecting two balls having the same color.
- 3) Calculate the probability of selecting two balls with different colors.

Part B

In this part, one ball is randomly selected from U:

- if the selected ball from U is red, then two balls are randomly and simultaneously selected from V.
- if the selected ball from U is blue, then three balls are randomly and simultaneously selected from V.

Consider the following events:

R: "The selected ball from U is red"

S: "The selected balls from V have the same color".

- 1) Determine the probability P(R).
- 2) Show that $P(S / R) = \frac{3}{7}$ and deduce $P(S \cap R)$.
- 3) The probability $P(S \cap \overline{R}) = \frac{5}{56}$, calculate P(S).

III- (10 points)

Consider the function f defined on \mathbb{R} as $f(x) = e^x - x - 2$.

Denote by (C) its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$.

Let (d) be the line with equation y = -x - 2.

- 1) Show that $\lim_{x\to +\infty} f(x) = +\infty$. Calculate f(2).
- 2) a- Determine $\lim_{x\to -\infty} f(x)$.
 - **b-** Show that (d) is an asymptote to (C) at $-\infty$.
 - **c-** Show that (C) is above (d) for all $x \in \mathbb{R}$.
- 3) Determine f'(x), then set up the table of variations of f.
- 4) The equation f(x) = 0 has two solutions $\alpha > 0$ and $\beta < 0$. Verify that $1.1 < \alpha < 1.2$.
- 5) Knowing that $-1.9 < \beta < -1.8$, draw (d) and (C).
- 6) Let $A(\alpha)$ be the area of the region limited by the curve (C), the line (d) and the two lines with equations x=0 and $x=\alpha$.
 - **a-** Verify that $e^{\alpha} = \alpha + 2$.
 - **b** Prove that $A(\alpha) = (\alpha + 1)$ units of area.

اسس تصحيح

I	Answer key	4 pts
1	b, $x - 2 > 0$ and $x \ne 0$; so domain =]2, + ∞ [1
2	c, $2 < x < 4$; $x - 2 = -x + 4$; $x = 3$ second way: by verification for x=3, $\ln(1) = \ln(1)$	1
3	b, let $u = \ln x$, $u' = \frac{1}{x}$, $\int \frac{\ln(x)}{x} dx = \int u' \times u dx = \frac{(\ln(x))^2}{2} + c$ second way: by verification $\left(\frac{(\ln(x))^2}{2}\right)' = \frac{\ln(x)}{x}$	1
4	$\mathbf{b}, \lim_{x \to +\infty} \frac{1 + \ln(x)}{\ln(x)} = \lim_{x \to +\infty} \frac{1}{\ln(x)} + 1 = 1$ second way: $\lim_{x \to +\infty} \frac{1 + \ln(x)}{\ln(x)} = H. R \lim_{x \to +\infty} \frac{\frac{1}{x}}{\frac{1}{x}} = 1$	1

II	Answer key	6 pts
A1	$P(2 \ red \ balls) = \frac{C_3^1}{C_8^1} \times \frac{C_4^1}{C_7^1} = \frac{3}{8} \times \frac{4}{7} = \frac{3}{14}$	1
A2	$P(\text{same color}) = \frac{3}{14} + \frac{C_5^1}{C_8^1} \times \frac{C_3^1}{C_7^1} = \frac{3}{14} + \frac{5}{8} \times \frac{3}{7} = \frac{27}{56}$	1
A3	$P(different\ colors) = 1 - \frac{27}{56} = \frac{29}{56}$	1
B1	$P(R) = \frac{C_3^1}{C_0^1} = \frac{3}{8}$	1
B2	$P(S/R) = \frac{c_4^2}{c_7^2} + \frac{c_3^2}{c_7^2} = \frac{3}{7}$ $P(R) \times P(S/R) = \frac{3}{8} \times \frac{3}{7} = \frac{9}{56}$	1
В3	$P(S) = P(S \cap R) + P(S \cap \overline{R}) = \frac{9}{56} + \frac{5}{56} = \frac{1}{4}$	1

III	Answer key	10 pts
1	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \left(\frac{e^x}{x} - 1 \right) - 2 = +\infty (+\infty - 1) - 2 = +\infty$	1
20	$f(2) = e^2 - 4 \cong 3{,}39$	4.
2a	$\lim_{x \to -\infty} f(x) = +\infty$	1/2
2b	$\lim_{x \to -\infty} [f(x) - (-x - 2)] = \lim_{x \to -\infty} e^x = 0$	1
	Then $y = -x - 2$ is an oblique asymptote to (C).	
2c	$f(x) - y_d = e^x > 0 \text{ for all } x$	1
	Then (C) is above (d) for all $x \in \mathbb{R}$.	1
3	$f'(x) = e^x - 1; f'(x) = 0 \text{ for } x = 0$	
	$x -\infty$ 0 $+\infty$	
	f' - 0 +	2
	$f + \infty$	
4	f(1.1) = -0.096 (negative)	
·	$f(1.2) = 0.12$ (positive) and f is continuous so $1.1 < \alpha < 1.2$	1
	Or second way $f(1.1) \times f(1.2) < 0$ and f is continuous so $1.1 < \alpha < 1.2$	_
5		
	β 0 1 2 4 6	2
6a)	$f(\alpha) = 0, e^{\alpha} - \alpha - 2 = 0 \Rightarrow e^{\alpha} = \alpha + 2$	1/2
6b)	$Area = \int_0^{\alpha} [f(x) - y_{(d)}] dx = \int_0^{\alpha} e^x dx = e^x]_0^{\alpha} = e^{\alpha} - 1 = (\alpha + 1)$ units of area	1