الاسم:	مسابقة في مادة الفيزياء
الرقم:	المدة: ساعتان ونصف

This exam is formed of four obligatory exercises in four pages. The use of non-programmable calculator is recommended.

Exercise 1 (5 pts)

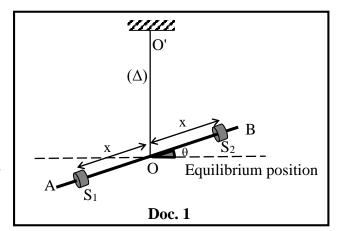
Torsion pendulum

Consider a torsion pendulum (P) formed by:

- a uniform rod AB suspended from its center of mass O
 to a vertical torsion wire fixed from its upper end to a
 point O';
- two identical objects, (S_1) and (S_2) , taken as particles of same mass m = 200 g. The two particles are fixed on the rod on opposite sides of O at the same adjustable distance « x » from it (Doc. 1).

Neglect the mass of the torsion wire. The wire has a torsion constant C, and the rod AB has a moment of inertia I_0 about an axis (Δ) confounded with (OO').

The rod is rotated from its equilibrium position by an angle θ_m in the horizontal plane, and then it is released from rest.



The rod starts oscillating without friction in a horizontal plane about (Δ). At time t, the angular abscissa of the rod is θ and its angular velocity is $\theta' = \frac{d\theta}{dt}$.

The horizontal plane containing the rod is taken as a reference level for gravitational potential energy.

Given: $\pi^2 = 10$

- 1) Write the expression of the moment of inertia I of (P) about (Δ) in terms of I₀, m, and x.
- 2) Write the expression of the mechanical energy ME of the system [(P), Earth] in terms of I, θ , C, and θ' .
- 3) Determine the differential equation that governs the variation of θ .
- 4) Deduce the expression of the proper (natural) period T_0 in terms of I and C.
- 5) Show that: $T_0^2 = \frac{4\pi^2 I_0}{C} + \frac{8\pi^2 m x^2}{C}$
- 6) We vary the distance x, and we measure the duration of 10 complete oscillations for each value of x. We record the measured values in the table of document 2.

x (cm)	10	15	20	25
Duration of 10 oscillations (s)	5.83	6.24	6.78	7.41
T_0 (s)				
$T_0^2 (s^2)$				
$x^2 (m^2)$				
Doc. 2				

- **6.1**) Copy and complete the table of document 2.
- **6.2)** Draw on the graph paper the curve that represents T_0^2 as a function of x^2 using the following drawing scale: On the axis of abscissa: $1 \text{ cm} \leftrightarrow 0.01 \text{ m}^2$

On the axis of ordinate: $1 \text{ cm} \leftrightarrow 0.1 \text{ s}^2$

- **6.3**) The shape of this curve can be considered in agreement with the expression of T_0^2 in part (5). Justify.
- 7) Deduce the values of I_0 and C.

Exercise 2 (5 pts)

Period of a simple pendulum

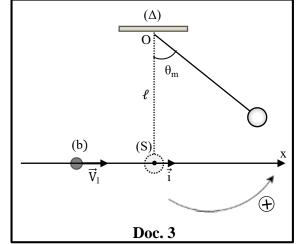
A simple pendulum is formed of a sphere (S), taken as a particle of mass $m_s = 2$ kg, suspended from a light inextensible cord of length $\ell = 1$ m.

A marble (b) of mass $m_b = 50$ g is launched with a velocity $\vec{V}_1 = 11 \ \vec{i}$ (m/s) along a horizontal x-axis of unit vector \vec{i} , and it makes a head-on collision with (S) initially at rest.

Just after the collision, marble (b) recoils horizontally with a velocity $\vec{V}_1' = -10.46 \ \vec{i} \ (\text{m/s})$ and (S) starts moving with a horizontal velocity of magnitude V_0 .

The pendulum [Cord, (S)] oscillates without friction in a vertical plane about a horizontal axis (Δ) passing through the upper end O of the cord (Doc. 3).

The purpose of this exercise is to determine the oscillation period of the pendulum for different values of the marble's launch speed.



Take:

- the horizontal plane passing through the lowest position of (S) as a reference level for gravitational potential energy;
- $\sin \theta \cong \theta$ in radians, for $\theta \leq 0.175$ rad;
- $g = 10 \text{ m/s}^2$.

1) Collision between (S) and (b)

- **1.1**) Prove that $V_0 = 0.537$ m/s by applying the principle of conservation of linear momentum to the system [(S), (b)].
- **1.2**) Show that this collision is elastic.

2) Maximum deflection of the pendulum

After the collision, the pendulum is deflected by a maximum angle θ_m . Show that $\theta_m = 0.17$ rad.

3) Oscillation of the pendulum

After the collision, the pendulum [Cord, (S)] oscillates in the vertical plane about (Δ). At an instant t, the angular abscissa of the pendulum is θ and its angular velocity is $\theta' = \frac{d\theta}{dt}$.

The differential equation the governs the variation of θ is: $\theta'' + \frac{g}{\ell} \sin \theta = 0$.

- **3.1**) Deduce that the motion of the pendulum is simple harmonic.
- **3.2**) Deduce the expression of the proper (natural) period T_0 of the oscillations in terms of ℓ and g.
- **3.3**) Calculate the value of T_0 .
- 4) The same experiment is repeated by lunching the marble horizontally with a velocity $\vec{V}_1 = V_1 \vec{i}$, where $V_1 < 11$ m/s. Specify whether the value of the oscillation period of the pendulum increases, decreases or remains the same.

2/4

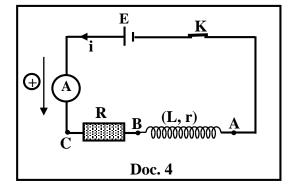
Characteristics of a coil

The circuit of document 4 consists of:

- an ideal battery of emf E = 12 V;
- an ohmic conductor of resistance $R = 15 \Omega$;
- a coil of inductance L and resistance r;
- an ammeter (A) of negligible resistance;
- a switch K.

The purpose of this exercise is to determine the values of L and r. At the instant $t_0 = 0$, switch K is closed and the current i in the circuit starts increasing gradually.

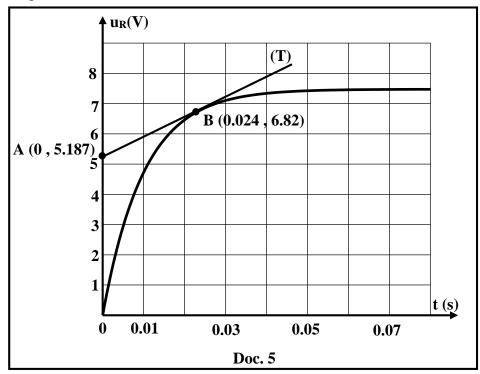
At the instant t_1 steady state is attained in the circuit, and ammeter (A) reads a current $I_1=0.5$ A.



- 1) The phenomenon of self-induction takes place in the coil between t₀ and t₁. Explain this phenomenon.
- 2) In steady state, the coil acts as a resistor of resistance r. Justify.
- 3) Show that the resistance of the coil is $r = 9 \Omega$.
- 4) Show that the differential equation that governs the variation of the voltage $u_{CB} = u_R$ is:

$$\frac{RE}{L} = \left(\frac{r+R}{L}\right)u_R + \frac{du_R}{dt}$$

- 5) Verify that $u_R = \frac{RE}{r+R} \left(1 e^{-\frac{t}{\tau}} \right)$ is a solution of this differential equation where $\tau = \frac{L}{r+R}$.
- **6)** Deduce the expression of the instant t_1 in terms of L, r, and R.
- 7) The curve of document 5 represents u_R as a function of time.
 - (T) is the tangent to the curve u_R at point B (0.024s, 6.82V).
 - **7.1**) Calculate the slope of the tangent (T).
 - **7.2)** Use document 5 and the differential equation in order to deduce the value of L.



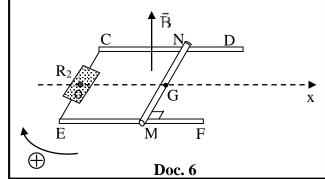
Exercise 4 (5 pts)

Electromagnetic induction

Two parallel conducting rails, CD and EF, of negligible resistance and separated by a distance $\ell = 15$ cm, are placed in a horizontal plane.

A rigid conducting rod MN, of length ℓ and perpendicular to the rails, may move without friction on the rails. The center of mass G of the rod moves along an x-axis which is parallel to the rails. The resistance of the rod is $R_1=0.5$ Ω . The ends C and E of the rails are connected to a resistor of resistance $R_2=0.5$ Ω .

The circuit formed by the two rails and the rod is placed in a vertical uniform magnetic field \vec{B} perpendicular to the plane of the rails and of magnitude B = 0.5 T (Doc. 6). At the instant $t_0 = 0$, G coincides with the origin O of the



x-axis, and the rod is displaced at a constant velocity \vec{V} in the positive x-direction.

At an instant t, the abscissa of G is $x = \overline{OG} = 2 t$ (x in m and t in s).

- 1) The magnetic flux crossing the closed circuit CNME changes.
 - 1.1) Indicate the reason behind the change in the magnetic flux crossing this circuit.
 - **1.2**) Explain this statement « The circuit CNME carries an electric current as long as the rod MN is moving ».
- 2) Show that the expression of the magnetic flux crossing the area CNME is $\phi = -0.15$ t (SI).
- 3) Determine the value of the electromotive force « e » induced in the rod.
- 4) Knowing that $u_{NM} = R_1 i e$, show that the expression of the induced electric current in the circuit

CNME is:
$$i = \frac{e}{R_1 + R_2}$$

- 5) Deduce the value and the direction of i.
- 6) An electromagnetic force (Laplace's force) \overrightarrow{F} is acting on the moving rod MN.
 - **6.1**) Indicate the direction of this force.
 - **6.2**) Calculate the magnitude F of \vec{F} .
- 7) We move the rod with a constant velocity having the same magnitude as that of \vec{V} but of opposite direction. Indicate in this case the direction and the magnitude of the Laplace force acting on the rod.

مسابقة في مادة الفيزياء المدة: ساعتان ونصف

Exer	xercise 1 (5 pts) Torsion pendulum					
Part					Mark	
1	$I_{[P]/\Delta} = I_{rod/\Delta} + I_{S1/\Delta} + I_{S2/\Delta} = I_0 + mx^2 + mx^2 = I_0 + 2mx^2$				0.25	
2	$ME = \frac{1}{2}I\theta'^2 + \frac{1}{2}C\theta^2$					0.5
3	ME= const , so $\frac{dE_m}{dt}=0$, then $I\theta'\theta''+C\theta\theta'=0 \ \ then \ \ \theta''+\frac{C}{I}\theta=0$				0.5	
4	The differential equation is of the form : $\theta'' + \omega_0^2 \theta = 0$, where $\omega_0 = \sqrt{\frac{C}{I}}$ So, $T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{I}{C}}$				0.25 0.25	
5	So, $T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{I}{C}}$ $T_0 = 2\pi \sqrt{\frac{I}{C}} = 2\pi \sqrt{\frac{I_0 + 2mx^2}{C}}$ $T_0^2 = \frac{4\pi^2 I_0}{C} + \frac{8\pi^2 m x^2}{C}$				0.25	
6.1	$\begin{array}{c} x \text{ (cm)} \\ \text{Duration of } 10 \text{ oscillations} \\ \hline T_0 \text{ (s)} \\ \hline T_0^2 \text{ (s}^2) \\ \hline x^2 \text{ (m}^2) \\ \end{array}$	10 5.83 0.583 0.34 0.01	15 6.24 0.624 0.39 0.022	20 6.78 0.678 0.46 0.04	25 7.41 0.741 0.55 0.06	0.75
6.2	0,9 T ₀ 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,01 0,02 0,03	0,04 0,05 0	06 0,07 0,08 0	x ²		0.75
6.3	The curve is a straight line not passing through the origin with a positive slope, so its equation is of the form: $T_0^2 = A x^2 + B$ (A and B are two positive constants). Therefore, the curve is an agreement with the relation $T_0^2 = \frac{4\pi^2 I_0}{C} + \frac{8\pi^2 m x^2}{C}$				0.5	
7	Slop of the curve = $\frac{8\pi^2 \text{m}}{\text{C}} = \frac{80 \times 0.02}{\text{C}}$	$\frac{2}{1} = \frac{0.55}{0.06}$	$\frac{-0.34}{0.01} = 4.2$, then C	≤ 4 N.m/rad	0.5
,	By choosing a point on the curve : $I_0 =$	0.06 ≤ 0.03 kg	-0.01 .m ²			0.5

Exerci	se 2 (5 pts) Period of a simple pendulum	
Part	Answer	Mark
1.1	$ \begin{vmatrix} \vec{P}_{before} = \vec{P}_{after} & ; & m_b \vec{v}_1 = m_b \vec{v}_1' + m_s \vec{v}_0 \\ m_b \vec{v}_1 - m_b \vec{v}_1' = m_s \vec{v}_0 & ; m_b (\vec{v}_1 - \vec{v}_1') = m_s \vec{v}_0 \\ 0.05 (11 \vec{i} + 10.46 \vec{i}) = 2 \vec{v}_0 & ; \vec{v}_0 = 0.537 \vec{i} (m/s) $	1
1.2	$\begin{split} \text{KE}_{before} &= \frac{1}{2} m_b v_1^2 = \frac{1}{2} \times 0.05 \times 11^2 = 3.02 \text{ J} \\ \text{KE}_{after} &= \frac{1}{2} m_b v_1^{'2} + \frac{1}{2} m_S v_0^2 = \frac{1}{2} \times 0.05 \times 10.46^2 + \frac{1}{2} \times 2 \times 0.537^2 = 3.02 \text{ J} \\ \text{KE}_{before} &= \text{KE}_{after} \text{ , then the collision is elastic.} \end{split}$	1
2	ME is constant, then: $\frac{1}{2}m_{s}v_{0}^{2}=m_{s}g~\ell~(1-\cos\theta_{m})$ $\frac{1}{2}(0.537^{2})=10~\times1\times(1-\cos\theta_{m})~, \text{ then } \cos\theta_{m}=0.986~, \text{ so } \theta_{m}=0.17~\text{rad}$	1
3.1	$\theta m \leq 0.175 \ \text{rad} , \text{then} \sin \theta \approx \theta \ , \ \text{so} \theta'' + \frac{g}{\ell} \sin \theta = 0.$ The differential equation is of the form : $\theta'' + \omega_0^2 \theta = 0 \ \text{with} \omega_0 = \sqrt{\frac{g}{\ell}} \ .$ Then the motion is simple harmonic.	0.5
3.2	$T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{\ell}{g}}$	0.5
3.3	$T_0 = 2\pi \sqrt{\frac{1}{10}} = 1.99 \cong 2 \text{ s}$	0.5
4	$V_1 < 11 \text{ m/s, then } \theta m \leq 0.175 \text{ rad, therefore the motion is still simple harmonic, hence}$ $T_0 = 2\pi \sqrt{\frac{\ell}{g}} \text{which is independent of } V_1.$ Then T_0 remains the same.	0.5

Exerci	Exercise 3 (5 pts) Characteristics of a coil				
Part	Answer	Mark			
1	Between t ₀ and t ₁ , the current increases, then the magnitude of the magnetic field produced inside the coil increases; hence, the coil is crossed by a variable self-flux. Therefore, the coil becomes the seat of induced emf.	0.5			
2	$\begin{split} u_{BA} &= ri + L\frac{di}{dt} \\ &\text{In steady state, } i = I_1 = \text{constant , then } \frac{di}{dt} = 0 \\ &\text{Then, } u_{BA} = ri ; \text{therefore, the coil acts as a resistor.} \end{split}$	0.5			
3	$\begin{array}{l} u_{CA} = u_{CB} + u_{BA} \text{, then } E = Ri + ri + L\frac{di}{dt} \\ \text{In steady state} : E = RI_1 + rI_1 \\ I_1 = \frac{E}{R+r} = \frac{12}{15+r} = 0.5 \text{, then} 15 + r = \frac{12}{0.5} = 24 \text{ , so} r = 9\Omega \end{array}$	0.5			
4	$\begin{split} E &= Ri + + ri + L\frac{di}{dt} \text{, then} E = L\frac{di}{dt} + (R+r)i \\ u_R &= Ri \; ; \text{then } i = \frac{u_R}{R} \text{ and } \frac{di}{dt} = \frac{1}{R}\frac{du_R}{dt} \\ So : E &= \frac{L}{R}\frac{du_R}{dt} + (R+r)\frac{u_R}{R} \\ \text{Therefore : } \frac{RE}{L} &= \left(\frac{r+R}{L}\right)u_R + \frac{du_R}{dt} \end{split}$	1			
5	$u_R = \frac{RE}{r+R} (1 - e^{\frac{-t}{\tau}})$ $\frac{du_R}{dt} = \frac{RE}{r+R} \times \frac{1}{\tau} \times e^{\frac{-t}{\tau}} = \frac{RE}{r+R} \times \frac{r+R}{L} \times e^{\frac{-t}{\tau}} = \frac{RE}{L} e^{\frac{-t}{\tau}}$ Replace in the differential equation: $\frac{RE}{L} = \left(\frac{r+R}{L}\right) \left(\frac{RE}{r+R} - \frac{RE}{r+R} e^{\frac{-t}{\tau}}\right) + \frac{RE}{L} e^{\frac{-t}{\tau}} , \text{ then } \frac{RE}{L} = \frac{RE}{L} - \frac{RE}{L} e^{\frac{-t}{\tau}} + \frac{RE}{L} e^{\frac{-t}{\tau}}$ Then, $0 = 0$ So, this is a solution for the differential equation.	0.75			
6	$t_1 = 5 \tau = \frac{5L}{r+R}$	0.25			
7.1	slope = $\frac{\Delta u_R}{\Delta t} = \frac{6.82 - 5.187}{0.024 - 0} = 68 \text{ V/s}$	0.5			
7.2	$\begin{split} \frac{RE}{L} &= \left(\frac{r+R}{L}\right) u_R + \frac{du_R}{dt} \\ At \ t &= 0.024 \ s \ , \ u_R = 6.82 V \ and \ \frac{du_R}{dt} = slope = 68 V/s \\ Replace in the differential equation: \\ \frac{15 \times 12}{L} &= \left(\frac{24}{L}\right) 6.82 + 68 \ , then \ L = 0.24 H = 240 mH \end{split}$	1			

Ex	ercise 4	4 (5 pts) Electromagnetic induction	
I	Part	Answer	Mark
1	1.1	During its motion, the area swept by the rod changes, then the circuit is crossed by a variable magnetic flux.	0.5
1	1.2	During the motion of the rod, the magnetic flux changes, then the rod becomes the seat of emf and the closed circuit carries an induced current.	0.5
	2	$\phi = B.S. \cos(\vec{B}, \vec{n}) = B. (\ell x). \cos(\pi) = 0.5 \times 0.15 \times 2 t = -0.15 t.$	0.5
	3	$e = -\frac{d\emptyset}{dt} = 0.15 \text{ V}$	0.75
	4	$\begin{aligned} u_{NM} &= R_1 i - e \\ &= u_{CE} = - R_2 i \text{, then } e = (R_1 + R_2) i \text{, so} i = \frac{e}{R_1 + R_2} \end{aligned}$ $\underbrace{ \begin{array}{c} \underline{or} : \\ u_{NM} + u_{CB} + u_{EC} + u_{CN} = 0 \end{array}}_{R_1 i - e + 0 + R_2 i + 0 = 0 \text{, then } i = \frac{e}{R_1 + R_2} \end{aligned}$	0.5
	5	$i = \frac{e}{R_1 + R_2} = \frac{0.15}{1} = 0.15A$ $i > 0$, then the circuit carries a current in the chosen positive sense (clockwise)	0.5 0.5
6	6.1	direction: to the left	0.25
	6.2	$F = i B e \sin(\pi/2) = 0.15 \times 0.5 \times 0.15 \times 1 = 0.011 N$	0.5
	7	Direction: to the right Value: F = 0.011 N	0.25 0.25