الاسم:	سـلابقة في مـادة الفيزبـاء
الرقّ:	المدة: سـاعنّان ونصف

This exam is formed of four obligatory exercises in four pages.
 The use of non-programmable calculator is recommended.

Exercise 1 (5 pts)

Simple pendulum

A simple pendulum consists of a particle of mass $\mathrm{m}=50 \mathrm{~g}$ attached from the lower end A of a massless and inextensible string OA of length ℓ.
This pendulum may oscillate in the vertical plane about a horizontal axis (Δ) passing through the upper extremity O of the string. The pendulum is shifted in the negative direction from its equilibrium position. At an instant $\mathrm{t}_{0}=0$, the angular abscissa of the pendulum is $\theta_{0}=-\frac{\pi}{36}$ rad, and the particle is launched in the positive direction with a velocity $\overrightarrow{\mathrm{V}}_{0}$ of magnitude V_{0} (Doc. 1). At an instant t , the angular abscissa of the pendulum is θ and the speed of the particle is $\mathrm{v}=\ell\left|\theta^{\prime}\right|=\ell\left|\frac{\mathrm{d} \theta}{\mathrm{dt}}\right|$ (Doc. 2).
Take:

- the horizontal plane containing A_{0}, the position of A at
equilibrium, as the reference level for gravitational potential energy;
- $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

1) Suppose that the pendulum oscillates without friction.

The second order differential equation in θ that describes the motion of the pendulum is:

$$
\theta^{\prime \prime}+20 \theta=0 \quad \text { (SI). }
$$

1.1) The pendulum performs simple harmonic motion. Justify.
1.2) Calculate the value of the proper (natural) period T_{0} of the pendulum.
1.3) Knowing that the proper period of the pendulum is $T_{0}=2 \pi \sqrt{\frac{\ell}{g}}$, show that $\ell=50 \mathrm{~cm}$.
1.4) The mechanical energy of the system (Pendulum, Earth) at an instant t is ME.
1.4.1) Show that the expression of the mechanical energy is $M E=\frac{1}{2} m v^{2}+m g \ell(1-\cos \theta)$.
1.4.2) Deduce the value of V_{0} knowing that $\mathrm{ME}_{0}=1.95 \times 10^{-3} \mathrm{~J}$ at $\mathrm{t}_{0}=0$.
2) In reality the pendulum is submitted to a force of friction. We repeat the above experiment and an appropriate device shows the angular abscissa θ of the pendulum as a function of time (Doc. 3). Using document 3 :
2.1) indicate the type of oscillations;
2.2) calculate the mechanical energy of the system (Pendulum, Earth) at $\mathrm{t}=0.52 \mathrm{~s}$;

2.3) deduce the average power lost by the system (Pendulum, Earth) between $\mathrm{t}_{0}=0$ and $\mathrm{t}=0.52 \mathrm{~s}$.

Exercise 2 (5 pts)

Characteristics of electric components

The aim of this exercise is to determine the capacitance C of a capacitor and the inductance L of a coil. For this purpose, we connect the circuit of document 4 which includes:

- an ideal battery G of electromotive force $\mathrm{E}=2 \mathrm{~V}$;
- a resistor of resistance $\mathrm{R}=1 \mathrm{k} \Omega$;
- a capacitor of capacitance C ;
- a coil of inductance L and negligible resistance;
- a switch K.

1) Series (R-C) circuit

The capacitor is initially uncharged. At the instant $\mathrm{t}_{0}=0$, we turn K to position (1). At an instant t, the charge of plate A is q and the current in the circuit is $i(D o c .5)$.
1.1) Name the physical phenomenon that takes place in the circuit.
1.2) Show that the differential equation that governs the variation of the voltage $u_{A B}=u_{C}$ across the capacitor is: $\tau \frac{d u_{C}}{d t}+u_{C}=E$, where $\tau=R C$ is the time constant of the circuit.
1.3) $u_{C}=2\left(1-e^{-1000 t}\right)\left(u_{C}\right.$ in V and t in $\left.s\right)$ is a solution of this differential equation. Determine the value of τ.
1.4) Deduce the value of C.
2) (L-C) circuit

The capacitor is fully charged. At an instant $\mathrm{t}_{0}=0$, taken as a new initial time, we turn K to position (2).
At an instant t, the charge of plate A is q and the current in the circuit is i (Doc.6).
2.1) Derive the differential equation that governs the variation of the charge q.
2.2) Deduce that the expression of the proper (natural) period T_{0} of the circuit is $\mathrm{T}_{0}=2 \pi \sqrt{\mathrm{LC}}$.

3) The curve of document 7 represents the electric energy W_{C} stored in the capacitor as a function of time.
Determine the value of T_{0} knowing that $\mathrm{T}_{0}=2 \mathrm{~T}_{\mathrm{E}}$, where T_{E} is the period of the electric energy.
2.4) Deduce the value of L.

Exercise 3 (5 pts)

Self induction
We consider a coil of inductance L and resistance r, a resistor of resistance $R=8 \Omega$, a switch K, an incandescent lamp and an ideal battery (G) of electromotive force $\mathrm{E}=10 \mathrm{~V}$.
The aim of this exercise is to study the effect of the coil on the brightness of the lamp in a DC series circuit, and to determine its characteristics.

1) Brightness of the lamp

We set up successively circuit 1 and circuit 2 of document 8 .
Statements 1 and 2 below describe the brightness of the lamp after closing K.
Statement 1: The lamp glows instantly at the instant of closing the switch.
Statement 2: After closing the switch,
 the brightness of the lamp increases gradually and becomes stable after a certain time.

Match each statement to the convenient circuit.

2) Determination of L and r

We connect the coil and the resistor in series across (G) as shown in document 9 .
At the instant $\mathrm{t}_{0}=0, \mathrm{~K}$ is closed.
At an instant t, the circuit carries a current i.
2.1) Prove, by applying the law of addition of voltages, that the differential equation that describes the variation of the voltage

$$
u_{D B}=u_{R} \text { is: } \frac{L}{R} \frac{d u_{R}}{d t}+\left(\frac{R+r}{R}\right) u_{R}=E .
$$

2.2) Deduce that the expression of the voltage across the resistor in the steady state is: $U_{R \max }=E \frac{R}{R+r}$.
2.3) The solution of this differential equation is $\mathrm{u}_{\mathrm{R}}=\mathrm{U}_{\mathrm{Rmax}}\left(1-\mathrm{e}^{\frac{-\mathrm{t}}{\tau}}\right)$, where $\tau=\frac{\mathrm{L}}{\mathrm{R}+\mathrm{r}}$.
A convenient apparatus draws u_{R} as a function of time (Doc. 10).
2.3.1) Use document 10 to indicate the value of $U_{R \max }$.
2.3.2) Determine the value of r.
2.3.3) Use document 10 to determine the value of τ.
2.3.4) Deduce the value of L.

Exercise 4 (5 pts)

Stray bullets

The aim of this exercise is to determine the thermal energy produced during the motion of a bullet fired from a rifle and to show its danger.
A bullet (S) taken as a particle of mass $\mathrm{m}=7 \times 10^{-3} \mathrm{~kg}$ is fired from point O on the ground with an initial velocity $\overrightarrow{\mathrm{V}}_{0}=\mathrm{V}_{0} \overrightarrow{\mathrm{j}}$. During the whole motion, the bullet is submitted to air resistance.
Take:

- $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$;
- the horizontal plane containing O as a reference level for gravitational potential energy.

1) Upward motion of the bullet

The bullet (S) is fired vertically upward from point O at an instant $\mathrm{t}_{0}=0$. (S) moves along the y -axis of origin O oriented positively upward. (S) reaches point A of maximum height h at $\mathrm{t}_{1}=9.84 \mathrm{~s}$ (Doc.11).
The graph of document 12 represents the speed V of (S) as a function of time during its upward motion between O and A .
1.1) Determine, using document 12 , the linear momenta $\overrightarrow{\mathrm{P}}_{0}$ and $\overrightarrow{\mathrm{P}}_{1}$ of (S) at $\mathrm{t}_{0}=0$ and at $\mathrm{t}_{1}=9.84 \mathrm{~s}$

Doc. 11
 respectively.
1.2) Deduce the variation in the linear momentum $\Delta \overrightarrow{\mathrm{P}}$ of (S) between t_{0} and t_{1}.
1.3) Given that $m \vec{g}+\vec{f}=\frac{\Delta \overrightarrow{\mathrm{P}}}{\Delta \mathrm{t}}$, where $\Delta \mathrm{t}=\mathrm{t}_{1}-\mathrm{t}_{0}$ and $\overrightarrow{\mathrm{f}}$ is the average friction force acting on (S) during Δt. Prove that the magnitude of \vec{f} is $f \cong 0.364 \mathrm{~N}$.
1.4) Calculate the mechanical energy ME_{0} of the system [(S)-Earth] at $\mathrm{t}_{0}=0$.
1.5) Given that $\Delta \mathrm{ME}=-\mathrm{f} \times \mathrm{h}$, where $\Delta \mathrm{ME}$ is the variation in the mechanical energy of the system [(S)-Earth] during $\Delta t=t_{1}-t_{0}$. Prove that $h \cong 3000 \mathrm{~m}$.
1.6) Deduce the value of the thermal energy $W_{\text {th } 1}$ produced during the upward motion of (S) knowing that $\mathrm{W}_{\mathrm{th} 1}=|\Delta \mathrm{ME}|$.

2) Downward motion of the bullet

Assume that the trajectory of (S) remains vertical.
(S) starts its downward motion from point A and passes through point $\mathrm{B}(\mathrm{AB}=352 \mathrm{~m})$ and reaches the ground at O with a speed $\mathrm{V}=44 \mathrm{~m} / \mathrm{s}$ (Doc. 13). The magnitude of the friction force acting on (S) during its motion between B and O is $f_{1}=0.07 \mathrm{~N}$.
2.1) Determine the value of the thermal energy $W_{\text {th } 2}$ produced during the motion of (S) between B and O knowing that $\mathrm{W}_{\mathrm{th} 2}=\left|\mathrm{W}_{\mathrm{F}_{1}}\right|$.
2.2) Calculate the thermal energy produced during the downward motion of (S) between A and O , knowing that the thermal energy produced during the downward motion of (S) between A and B is 18 J .

3) Danger of the stray bullet

The bullet can penetrate the skin of a human if its speed exceeds $61 \mathrm{~m} / \mathrm{s}$.
15^{0}), it follows a A bullet (S^{\prime}) identical to (S) is fired upward at a slight angle
curvilinear path and reaches the ground at a speed $90 \mathrm{~m} / \mathrm{s}$.
Specify whether (S) or $\left(\mathrm{S}^{\prime}\right)$ is more dangerous when hitting a human as it reaches the ground.

Exercise 1 (5 pts)

Simple pendulum

Part		Answer	Mark
1	1.1	The differential equation $\theta^{\prime \prime}+20 \theta=0$ is of the form: $\theta^{\prime \prime}+\omega_{0}^{2} \theta=0$, then it is a simple harmonic motion.	0.25
	1.2	$\begin{aligned} & \omega_{0}=\sqrt{20} \mathrm{rad} / \mathrm{s} \\ & \mathrm{~T}_{0}=\frac{2 \pi}{\omega_{0}}=\frac{2 \pi}{\sqrt{20}} \quad, \text { then } \quad \mathrm{T}_{0}=1.405 \mathrm{~s} \end{aligned}$	0.75
	1.3	$\mathrm{T}_{0}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}} \quad$, then $\quad 1.405=2 \pi \sqrt{\frac{\ell}{10}} \quad$, hence $\quad 1.974=4 \pi^{2} \frac{\ell}{10} \quad$, so $\quad \ell=0.5 \mathrm{~m}$	0.5
	1.4	$\begin{aligned} & \text { ME }=\mathrm{KE}+\mathrm{GPE} \\ & \text { But, } \\ & \mathrm{GPE}=\mathrm{mgz}=\mathrm{mg}(\ell-\ell \cos \theta)=\mathrm{mg} \ell(1-\cos \theta) \quad \text { (Figure) } \\ & \\ & \mathrm{KE}=\frac{1}{2} \mathrm{I} \theta^{\prime 2} \quad, \quad \text { but } \mathrm{I}=\mathrm{m} \ell^{2} \quad \text { and } \mathrm{v}=\ell \theta^{\prime} \\ & \text { Then, } \quad \mathrm{ME}=\frac{1}{2} \mathrm{~m}^{2}+\mathrm{mg} \ell(1-\cos \theta) \end{aligned}$	1
		$\begin{aligned} & \mathrm{ME}_{\mathrm{o}}=\frac{1}{2} \mathrm{~m} \mathrm{~V}_{0}^{2}+\mathrm{mg} \ell\left(1-\cos \theta_{0}\right) \\ & 1.95 \times 10^{-3}=\frac{1}{2} \times 0.05 \mathrm{~V}_{0}^{2}+0.05 \times 10 \times 0.5\left[1-\cos \left(\frac{-\pi}{36}\right)\right], \text { then } \quad \mathrm{V}_{0}=0.2 \mathrm{~m} / \mathrm{s} \end{aligned}$	0.75
2	2.1	Free undamped mechanical oscillations	0.25
	2.2	$\begin{aligned} & \mathrm{ME}_{(0.52)}=0+\operatorname{mg} \ell\left(1-\cos \theta_{(0.52)}\right)=0.05 \times 10 \times 0.5\left[1-\cos \left(88 \times 10^{-3}\right)\right] \\ & \text { Then, } \quad \operatorname{ME}_{(0.52)}=9.67 \times 10^{-4} \mathrm{~J} \end{aligned}$	0.5
	2.3	$\begin{aligned} & \mathrm{P}_{\text {average }}=\frac{\mathrm{ME}_{\text {lost }}}{\Delta \mathrm{t}}=\frac{1.95 \times 10^{-3}-9.67 \times 10^{-4}}{0.52} \\ & \text { Then, } \quad \mathrm{P}_{\text {average }}=1.89 \times 10^{-3} \mathrm{~W} \end{aligned}$	0.5

Exercise 2 (5 pts)
Characteristics of electric components

Part		Answer	Mark
1	1.1	Charging the capacitor	0.25
	1.2	$\mathrm{q}=\mathrm{Cu}_{\mathrm{C}}$ and $\mathrm{i}=+\frac{\mathrm{dq}}{\mathrm{dt}} \quad$, then $\quad \mathrm{i}=\mathrm{C} \frac{\mathrm{du}_{\mathrm{C}}}{\mathrm{dt}}$ $u_{A M}=u_{A B}+u_{B M}$,thus $E=u_{C}+R i=u_{C}+R C \frac{d u_{C}}{d t}$ But, $\tau=\mathrm{RC} \quad$, hence $\quad \mathrm{E}=\mathrm{u}_{\mathrm{C}}+\tau \frac{\mathrm{du}_{C}}{\mathrm{dt}}$	0.75
	1.3	$\mathrm{u}_{\mathrm{C}}=2\left(1-\mathrm{e}^{-1000 \mathrm{t}}\right) \quad \text {, then } \quad \frac{\mathrm{du}_{\mathrm{C}}}{\mathrm{dt}}=2000 \mathrm{e}^{-1000 \mathrm{t}}$ Substituting in the above differential equation gives: $\mathrm{E}=2-2 \mathrm{e}^{-1000 \mathrm{t}}+\tau \times 2000 \mathrm{e}^{-1000 \mathrm{t}}$ $\mathrm{E}=2+(-2+2000 \tau) \mathrm{e}^{-1000 t}$, but $\mathrm{e}^{-1000 t}=0$ is rejected Then, $-2+2000 \tau=0$, hence $\tau=10^{-3} \mathrm{~s}$	1
	1.4	$\tau=\mathrm{RC} \quad$, then $\quad \mathrm{C}=\frac{\tau}{\mathrm{R}}=\frac{10^{-3}}{1000} \quad$, so $\quad \mathrm{C}=10^{-6} \mathrm{~F}=1 \mu \mathrm{~F}$	0.5
2	2.1	$\begin{aligned} & \mathrm{u}_{\mathrm{AB}}=\mathrm{u}_{\mathrm{AF}}+\mathrm{u}_{\mathrm{FN}}+\mathrm{u}_{\mathrm{NB}} \quad, \text { then } \quad \frac{\mathrm{q}}{\mathrm{C}}=0+\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}+0 \\ & \mathrm{i}=-\frac{\mathrm{dq}}{\mathrm{dt}}=-\mathrm{q}^{\prime} \quad \text {, then } \quad \mathrm{i}^{\prime}=-\frac{\mathrm{d}^{2} \mathrm{q}}{\mathrm{dt}^{2}}=-\mathrm{q}^{\prime \prime} \\ & \frac{\mathrm{q}}{\mathrm{C}}=-\mathrm{L} \mathrm{q}^{\prime \prime} \quad \text {, then : } \quad \mathrm{q}^{\prime \prime}+\frac{1}{\mathrm{LC}} \mathrm{q}=0 \end{aligned}$	1
	2.2	The differential equation is of the form of : $q^{\prime \prime}+\omega_{0}^{2} q=0$, then $\omega_{0}=\frac{1}{\sqrt{\text { LC }}}$ $\mathrm{T}_{0}=\frac{2 \pi}{\omega_{0}} \quad$, then $\quad \mathrm{T}_{0}=2 \pi \sqrt{\mathrm{LC}}$	0.5
	2.3	Graphically, $\mathrm{T}_{\mathrm{E}}=0.5 \pi \mathrm{~ms}$, then $\mathrm{T}_{0}=2 \mathrm{~T}_{\mathrm{E}}=2 \times 0.5 \pi \quad$, so $\quad \mathrm{T}_{0}=\pi \mathrm{ms}$	0.5
	2.4	$\mathrm{T}_{0}^{2}=4 \pi^{2} \mathrm{LC}$, then $\left(\pi \times 10^{-3}\right)^{2}=4 \pi^{2} \mathrm{~L}\left(10^{-6}\right) \quad$, so $\mathrm{L}=0.25 \mathrm{H}$	0.5

Exercise 4 (6 pts)

Stray bullets

	Part	Answer	Mark
1	1.1	$\begin{aligned} & \vec{P}_{o}=m \vec{V}_{0}=7 \times 10^{-3} \times 610 \dot{j} \quad \text {, then } \quad \vec{P}_{o}=4.27 \dot{j}(\mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}) \\ & \vec{P}_{1}=m \vec{V}_{1}=\overrightarrow{0} \quad, \text { since } \end{aligned}$	$\begin{gathered} 0.5 \\ 0.25 \end{gathered}$
	1.2	$\Delta \overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{P}}_{1}-\overrightarrow{\mathrm{P}}_{0}=\overrightarrow{0}-4.27 \mathrm{j} \quad$, so $\quad \Delta \overrightarrow{\mathrm{P}}=-4.27 \mathrm{j} \quad(\mathrm{kg} . \mathrm{m} / \mathrm{s})$	0.5
	1.3	$\mathrm{m} \overrightarrow{\mathrm{~g}}+\overrightarrow{\mathrm{f}}=\frac{\Delta \overrightarrow{\mathrm{P}}}{\Delta \mathrm{t}}$ Projecting the vectors along the y-axis gives : $-\mathrm{mg}-\mathrm{f}=\frac{\Delta \mathrm{P}}{\Delta \mathrm{t}}$ Then, $\quad-7 \times 10^{-3} \times 10-\mathrm{f}=\frac{-4.27}{9.84} \quad$, thus $\mathrm{f} \cong 0.364 \mathrm{~N}$	0.75
	1.4	$\mathrm{ME}_{0}=\mathrm{KE}_{0}+\mathrm{PE}_{\mathrm{g} 0}=\frac{1}{2} \mathrm{~m} V_{\mathrm{o}}^{2}+\mathrm{mg} \mathrm{~h}_{\mathrm{o}}=\frac{1}{2} \times\left(7 \times 10^{-3}\right) \times 610^{2}+0$ $\text { Then }, \quad \mathrm{ME}_{\mathrm{o}}=1302.35 \mathrm{~J}$	0.5
	1.5	$\begin{aligned} & \mathrm{ME}_{1}=\mathrm{KE}_{1}+\mathrm{PE}_{\mathrm{g} 1}=\frac{1}{2} \mathrm{~m} \mathrm{~V}_{1}^{2}+\mathrm{mgh}=0+7 \times 10^{-3} \times 10 \mathrm{~h}=0.07 \mathrm{~h} \\ & \Delta \mathrm{ME}=\mathrm{W}_{\mathrm{f}} \quad \text {, then } \quad \mathrm{ME}_{1}-\mathrm{ME}_{0}=-\mathrm{f} \times \mathrm{h} \\ & 0.07 \mathrm{~h}-1302.35=-0.364 \mathrm{~h} \quad ; \quad \text { therefore, } \quad \mathrm{h} \cong 3000 \mathrm{~m} \end{aligned}$	0.75
	1.6	$\begin{aligned} & \Delta \mathrm{ME}=W_{\vec{f}}=-\mathrm{f} \mathrm{~h}=-0.364 \times 3000=-1092 \mathrm{~J} \\ & \mathrm{~W}_{\mathrm{th} 1}=\|\Delta \mathrm{ME}\|=1092 \mathrm{~J} \end{aligned}$	0.25
2	2.1	$\begin{aligned} & \hline \mathrm{W}_{\mathrm{th} 2}=\left\|\mathrm{W}_{\mathrm{f}_{1}}\right\| \quad, \text { and } \quad \mathrm{W}_{\mathrm{f}}=-\mathrm{f}_{1} \times \mathrm{BO} \\ & \mathrm{BO}=\mathrm{AO}-\mathrm{AB}=3000-352=2648 \mathrm{~m} \\ & \mathrm{~W}_{\mathrm{f}}=-0.07 \times 2648=-185.36 \mathrm{~J} \cong-185 \mathrm{~J} \quad, \text { then } \quad \mathrm{W}_{\mathrm{th} 2} \cong 185 \mathrm{~J} \end{aligned}$	0.75
	2.2	$\mathrm{W}_{\text {thermal }}=18+185=203 \mathrm{~J}$	0.25
	3	For S : $V_{\text {ground }}=44 \mathrm{~m} / \mathrm{s}<61 \mathrm{~m} / \mathrm{s}$ For $\mathrm{S}^{\prime}: \mathrm{V}_{\text {ground }}=90 \mathrm{~m} / \mathrm{s}>61 \mathrm{~m} / \mathrm{s}$ Therefore, S^{\prime} is more dangerous than S	0.5

