مسابقة في مـادة الرياضيات

عدد المسـائل: خمس
الرق:
ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالنز ام بترتيب المسائل الواردة في المسابقة).

I- (2 points)

In the table below, only one among the proposed answers to each question is correct.
Write the number of each question and give, with justification, the answer that corresponds to it.

№	Questions	Proposed Answers		
		a	b	c
1	Consider the function f given by $\mathrm{f}(\mathrm{x})=\ln \left(\frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{e}^{\mathrm{x}}-2}\right)$ The domain of definition of f is	$] \ln 2 ;+\infty[$]0; $+\infty$ [] $-\infty$; $+\infty$ [
2	For all real numbers $\mathrm{x}, \frac{\mathrm{e}^{-\mathrm{x}}}{\mathrm{e}^{-\mathrm{x}}+2}$ is equal to	$\frac{1}{3}$	$\frac{1}{1+2 \mathrm{e}^{\mathrm{x}}}$	$\frac{-e^{x}}{-e^{x}+2}$
3	The equation $\ln ^{2} x+\ln x-6=0$ has two roots x_{1} and x_{2}. The product $\mathrm{x}_{1} \cdot \mathrm{X}_{2}$ is equal to	-6	e^{-1}	e^{30}
4	A security entrance keyboard of a building is formed of three letters A, B and C and five digits $1,2,3,4$ and 5. The entrance code is formed of one letter followed by a number consisting of three distinct digits. The number of all possible codes is	15	180	375

II- (3 points)

The complex plane is referred to a direct orthonormal system ($0 ; \overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}$).
Consider the points A, M and M^{\prime} with affixes $z_{A}=-i, z_{M}=z$ and $z_{M^{\prime}}=z^{\prime}$ such that
$\mathrm{z}^{\prime}=\frac{\mathrm{z}+\mathrm{i}}{\mathrm{i} \overline{\mathrm{z}}}$ with $\mathrm{z} \neq 0$.
Suppose that $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ and $\mathrm{z}^{\prime}=\mathrm{x}^{\prime}+\mathrm{iy}{ }^{\prime}$ where $\mathrm{x}, \mathrm{y}, \mathrm{x}^{\prime}$ and y^{\prime} are real numbers.

1) Write z^{\prime} in exponential form in the case where $z=e^{i \frac{\pi}{2}}$.
2) Write z in algebraic form in the case where $z^{\prime}=z$.
3) a-Show that $O M^{\prime}=\frac{A M}{O M}$.
b- Show that when M varies on the perpendicular bisector of [OA], the point M^{\prime} varies on a circle (C) whose center and radius are to be determined.
4) In this part $x>0$ and $y>0$.
a- Show that $\frac{z^{\prime}+i}{z}=\frac{2 y+1}{x^{2}+y^{2}}$ and deduce that (OM) and (M'A) are parallel.
b- Show that $\mathrm{z}^{\prime}-\mathrm{z}=\frac{\mathrm{i}+\mathrm{z}-\mathrm{i} \overline{\mathrm{z}}}{\mathrm{i} \overline{\mathrm{z}}}$ and deduce that if M belongs to (C), then $\mathrm{MM}^{\prime}=\mathrm{OA}$.

III- (3 points)

An urn U contains red balls and black balls holding distinct natural numbers.

- 60% of the balls are red of which 80% hold odd numbers.
- 70% of the black balls hold odd numbers.

Part A

One ball is selected from the urn. Consider the following events:
R : "the selected ball is red"
O: "the selected ball holds an odd number".

1) Show that the probability $P(O \cap R)$ is equal to 0.48 and calculate $P(O \cap \bar{R})$.
2) Deduce that $P(O)=0.76$.
3) Are the events R and O independent? Justify your answer.

Part B

Suppose in this part that the number of balls in the urn U is 50 .

1) Show that the number of red balls holding odd numbers is equal to 24 .
2) Copy and complete the following table :

	Red	Black	Total
Odd			38
Even			
Total	30		50

3) Three balls are selected randomly and simultaneously from the urn U. a- Calculate the probability of selecting at least one red ball holding an odd number.
b- The even numbered balls hold the numbers $2,4,6, \ldots, 24$.
Knowing that the three selected balls hold even numbers, calculate the probability that the sum of the numbers on the balls is greater than 13 .

IV- (4 points)

In the figure below:

- ABCD is a direct square with center I and side 8 .
- E is the midpoint of $[A B]$.
- F is the midpoint of [EB].
- J is the midpoint of [DC].
- L is the midpoint of [DA].

1) Let S be the direct plane similitude that maps F onto I and maps B onto J.
a- Show that $\mathrm{k}=2$ and $\alpha=\frac{\pi}{2}$ are respectively the ratio and an angle of S .
b- Show that E is the center of S .
2) Let S^{\prime} be the direct plane similitude with ratio $\mathrm{k}^{\prime}=2$ and an angle $-\frac{\pi}{2}$ that maps I onto B.
a- Show that $S^{\prime}(L)=C$.
b- Show that the image of (LD) by S^{\prime} is the line (DC).
c- Determine the image of (IC) by S^{\prime}.
d- Determine the image of A by S^{\prime}.
3) Let $h=S$ o S^{\prime}.
a- Show that h is a dilation whose ratio is to be determined.
b- Verify that $h(I)=J$.
c- Let W be the center of h, prove that W is the center of gravity of triangle ABJ.

V- (8 points)

Consider the two functions f and g defined over $] 0 ;+\infty\left[\right.$ as $f(x)=x^{2}+1-\ln x$ and $g(x)=x+\frac{\ln x}{x}$. Denote by (C) the representative curve of g in an orthonormal system $(\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}})$.

Let(d) be the line with equation $\mathrm{y}=\mathrm{x}$.

1) The table below is the table of variations of f.

Show that $\mathrm{f}(\mathrm{x})>0$ for all $\mathrm{x}>0$.
2) a- Determine $\lim _{x \rightarrow 0} g(x)$ and deduce an asymptote to (C).
b- Determine $\lim _{x \rightarrow+\infty} g(x)$ and deduce that (d) is an asymptote to (C).
c- Study, according to the values of x, the relative positions of (C) and (d).
3) a- Show that $\mathrm{g}^{\prime}(\mathrm{x})=\frac{\mathrm{f}(\mathrm{x})}{\mathrm{x}^{2}}$ and deduce that $\mathrm{g}^{\prime}(\mathrm{x})>0$ for all $\mathrm{x}>0$.
b- Set up the table of variations of g.
4) Prove that the equation $\mathrm{g}(\mathrm{x})=0$ has a unique root α and that $0.6<\alpha<0.7$.
5) Draw (d) and (C).
6) Calculate, in terms of α, the area of the region bounded by (C), (d) and the lines with equations $\mathrm{x}=\alpha$ and $\mathrm{x}=\mathrm{e}$.

فرع: العلوم العامـة

أسس تصحيح مسابقة الرياضيات

\mathbf{I}	Answers	3pts
$\mathbf{1}$	$\left.\mathrm{e}^{\mathrm{x}}-2>0 ; \mathrm{e}^{\mathrm{x}}>2 ; \mathrm{x}>\ln 2 ; \mathrm{D}_{\mathrm{f}}=\right] \ln 2 ;+\infty[\quad$ (a)	$\mathbf{0 . 7 5}$
$\mathbf{2}$	$\frac{\mathrm{e}^{-\mathrm{x}}}{\mathrm{e}^{-\mathrm{x}}+2}=\frac{\mathrm{e}^{-\mathrm{x}}}{\mathrm{e}^{-\mathrm{x}}+2} \times \frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{e}^{\mathrm{x}}}=\frac{1}{1+2 \mathrm{e}^{\mathrm{x}}} \quad$ (b)	$\mathbf{0 . 7 5}$
$\mathbf{3}$	The roots of the equation $\ln ^{2} \mathrm{x}+\ln \mathrm{x}-6=0$ are $\mathrm{x}_{1}=\mathrm{e}^{-3}$ and $\mathrm{x}_{2}=\mathrm{e}^{2}$. Then $\mathrm{x}_{1} \cdot \mathrm{x}_{2}=\mathrm{e}^{-1}$	(b)
$\mathbf{4}$	The number of all possible codes is $3 \times \mathrm{A}_{5}^{3}=180 \quad$ (b)	$\mathbf{0 . 7 5}$

II	Answers	4.5pts
1	$\mathrm{z}^{\prime}=2 \mathrm{i}=2 \mathrm{e}^{\mathrm{i} \frac{\pi}{2}}$	0.5
2	$\begin{aligned} & \mathrm{z}^{\prime}=\mathrm{z} ; \mathrm{iz} \overline{\mathrm{z}}=\mathrm{z}+\mathrm{i} \\ & \mathrm{i}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=\mathrm{x}+\mathrm{iy}+\mathrm{i} ; \mathrm{x}=0 \text { and } \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{y}+1 ; \mathrm{y}^{2}-\mathrm{y}-1=0 \\ & \mathrm{z}_{1}=\frac{1-\sqrt{5}}{2} \mathrm{i} \text { or } \mathrm{z}_{2}=\frac{1+\sqrt{5}}{2} \mathrm{i} \end{aligned}$	0.5
3a	$\mathrm{z}^{\prime}=\frac{\mathrm{z}+\mathrm{i}}{\mathrm{i} \overline{\mathrm{z}}} ;\left\|\mathrm{z}^{\prime}\right\|=\frac{\|\mathrm{z}+\mathrm{i}\|}{\|\mathrm{i} \overline{\mathrm{z}}\|} ;\left\|\mathrm{z}^{\prime}\right\|=\frac{\|\mathrm{z}+\mathrm{i}\|}{\|\mathrm{i}\| \times\|\overline{\mathrm{z}}\|} ;\left\|\mathrm{z}^{\prime}\right\|=\frac{\|\mathrm{z}+\mathrm{i}\|}{\|\mathrm{z}\|} ; \mathrm{OM}^{\prime}=\frac{\mathrm{AM}}{\mathrm{OM}}$	0.5
3b	$\mathrm{MO}=\mathrm{MA} ; \quad \mathrm{OM}^{\prime}=1 \quad ; \quad \mathrm{M}^{\prime}$ moves on the circle (C) with center O and radius 1.	1
4a	$\frac{z^{\prime}+i}{z}=\frac{\frac{z+i}{i \bar{z}}+i}{z}=\frac{z+i+i^{2} \bar{z}}{i z \bar{z}}=\frac{2 i y+i}{i\left(x^{2}+y^{2}\right)}=\frac{2 y+1}{x^{2}+y^{2}}$ $\frac{\mathrm{z}^{\prime}+\mathrm{i}}{\mathrm{z}}=\frac{2 \mathrm{y}+1}{\mathrm{x}^{2}+\mathrm{y}^{2}} \in \mathbb{R}$, then (OM) and ($\left.\mathrm{M}^{\prime} \mathrm{A}\right)$ are parallel.	1
4b	$\begin{aligned} & z^{\prime}-z=\frac{z+i}{i \bar{z}}-z=\frac{i+z-i z \bar{z}}{i \bar{z}} ; \quad M \in(C) \text { then }\|z\|=\|\bar{z}\|=1 \\ & \left\|z^{\prime}-z\right\|=\left\|\frac{i+z-i z \bar{z}}{i \bar{z}}\right\|=\frac{\|i+z-i z \bar{z}\|}{\|i \bar{z}\|}=\frac{\|i+z-i z \bar{z}\|}{\|i\| \times\|\bar{z}\|}=\|i+z-i \times 1\|=\|z\|=1 . \end{aligned}$ And $\mathrm{OA}=1$ then $\mathrm{MM}^{\prime}=\mathrm{OA}$.	1

III	Answers				4.5pts
A1	$\begin{aligned} & \mathrm{P}(\mathrm{I} \cap \mathrm{R})=\mathrm{P}(\mathrm{I} / \mathrm{R}) \times \mathrm{P}(\mathrm{R})=0.8 \times 0.6=0.48 \\ & \mathrm{P}(\mathrm{I} \cap \overline{\mathrm{R}})=\mathrm{P}(\mathrm{I} / \overline{\mathrm{R}}) \times \mathrm{P}(\overline{\mathrm{R}})=0.7 \times 0.4=0.28 \end{aligned}$				1
A2	$\mathrm{P}(\mathrm{I})=\mathrm{P}(\mathrm{I} \cap \mathrm{R})+\mathrm{P}(\mathrm{I} \cap \overline{\mathrm{R}})=0.48+0.28=0.76$				0.5
A3	$\mathrm{P}(\mathrm{I} \cap \mathrm{R})=0.48 \neq \mathrm{P}(\mathrm{I}) \times \mathrm{P}(\mathrm{R})=0.76 \times 0.6=0.456$ Then the events R and I are not independent.				0.5
B1	The number of red balls holding odd numbers is $50 \times 0.48=24$				0.5
B2		Red	Black	Total	0.5
	Odd	24	14	38	
	Even	6	6	12	
	Total	30	20	50	
B3.a	P (selecting at least one red ball holding an odd number) $=1-\frac{\mathrm{C}_{26}^{3}}{\mathrm{C}_{50}^{3}}=\frac{85}{98}$				0.5
B3.b	$\begin{aligned} & \underline{\mathbf{2} ; \underline{\mathbf{4}} ; \underline{\mathbf{6}} ; 8 ; 10 ; 12 ; 14 ; 16 ; 18 ; 20 ; 22 ; 24} \begin{array}{r} \mathrm{P} \text { (the sum of the numbers on the balls is greater than } 13 / \text { even })=1-\frac{\mathrm{C}_{3}^{3}}{\mathrm{C}_{12}^{3}}=\frac{219}{220} \\ \text { or } 1-\frac{\mathrm{C}_{1}^{1} \times \mathrm{C}_{1}^{1} \times \mathrm{C}_{1}^{1}}{\mathrm{C}_{12}^{3}}=\frac{219}{220} \end{array} \end{aligned}$				1

IV	Answers	6pts
1.a	$\begin{aligned} & \mathrm{S}(\mathrm{~F})=\mathrm{I} \text { and } \mathrm{S}(\mathrm{~B})=\mathrm{J} \text { then } \mathrm{K}=\frac{\mathrm{IJ}}{\mathrm{FB}}=\frac{4}{2}=2 . \\ & \alpha=(\overrightarrow{\mathrm{FB}} ; \overrightarrow{\mathrm{I}})=(\overrightarrow{\mathrm{FB}} ; \overrightarrow{\mathrm{BC}})=\frac{\pi}{2}+2 \mathrm{k} \pi ; \mathrm{k} \in \mathbb{Z} \end{aligned}$	1
1.b	E is symmetric of B with respect to F, then $S(E)$ is symmetric of $S(B)=J$ with respect to $S(F)=I$, then $S(E)=E$, then E is the center of S $\mathrm{EF}=2$ and $\mathrm{EI}=4$ then $\mathrm{EI}=2 \mathrm{EF}$ and $(\overrightarrow{\mathrm{EF}} ; \overrightarrow{\mathrm{EI}})=\frac{\pi}{2}+2 \mathrm{k} \pi$ and since $\mathrm{S}(\mathrm{F})=\mathrm{I}$ then $\mathrm{S}(\mathrm{E})=\mathrm{E}$.	1
2.a	$\frac{\mathrm{BC}}{\mathrm{IL}}=\frac{4}{2}=2=\mathrm{K}^{\prime}$ and $(\overrightarrow{\mathrm{IL}} ; \overrightarrow{\mathrm{BC}})=(\overrightarrow{\mathrm{IL}} ; \overrightarrow{\mathrm{IJ}})=-\frac{\pi}{2}=\alpha^{\prime}$ and $\mathrm{S}^{\prime}(\mathrm{I})=\mathrm{B}$. Then $\mathrm{S}^{\prime}(\mathrm{L})=\mathrm{C}$	0.5
2.b	$\mathrm{S}^{\prime}((\mathrm{LD}))$ is a line $\perp(\mathrm{LD})$ and passing through $\mathrm{S}^{\prime}(\mathrm{L})=\mathrm{C}$. Then $\mathrm{S}^{\prime}((\mathrm{LD}))=(\mathrm{DC})$.	0.5
$2 . \mathrm{c}$	$\mathrm{S}^{\prime}((\mathrm{IC}))$ is a line $\perp(\mathrm{IC})$ and passing through $\mathrm{S}^{\prime}(\mathrm{I})=\mathrm{B}$. Then $\mathrm{S}^{\prime}((\mathrm{IC}))=(\mathrm{BD})$.	0.5
$2 . \mathrm{d}$	$(\mathrm{IC}) \cap(\mathrm{LD})=\{\mathrm{A}\}$ then $\left\{\mathrm{S}^{\prime}(\mathrm{A})\right\}=\mathrm{S}^{\prime}((\mathrm{IC})) \cap \mathrm{S}^{\prime}((\mathrm{LD}))=(\mathrm{BD}) \cap(\mathrm{DC})=\{\mathrm{D}\}$.	0.5
3.a	$\alpha+\alpha^{\prime}=\frac{\pi}{2}+\frac{-\pi}{2}=0$ and $\mathrm{k} \cdot \mathrm{k}^{\prime}=4$ then $\mathrm{H}=\mathrm{S}$ o S^{\prime} is a dilation of ratio 4.	0.5
3.b	$\mathrm{h}(\mathrm{I})=\mathrm{S}$ o $\mathrm{S}^{\prime}(\mathrm{I})=\mathrm{S}(\mathrm{B})=\mathrm{J}$.	0.5
$3 . \mathrm{c}$	$\mathrm{h}(\mathrm{I})=\mathrm{J}$ and W is the center of h , then $\overrightarrow{\mathrm{WJ}}=4 \overrightarrow{\mathrm{WI}}$ then $\overrightarrow{\mathrm{WJ}}=4(\overrightarrow{\mathrm{JI}}-\overrightarrow{\mathrm{JW}}) ;-3 \overrightarrow{\mathrm{WJ}}=4 \times\left(\frac{1}{2} \overrightarrow{\mathrm{EJ}}\right)$ then $\overrightarrow{\mathrm{JW}}=\frac{2}{3} \overrightarrow{\mathrm{JE}}$ and E midpoint of $[\mathrm{AB}]$, then W is the center of gravity of triangle JAB.	1

