ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم اللييانات.

- يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (2 points)

In the table below, only one among the proposed answers to each question is correct. Write down the number of each question and give, with justification, the corresponding answer.

№	Questions	Answers		
		a	b	c
1	Let f be the function given by $f(x)=\ln \left(x^{2}-3 x\right)$ The domain of definition of f is	[0; + 0 [[1; 3[$]-\infty ; 0[U] 3 ;+\infty[$
2	For all real numbers x, $\ln \left(e^{x}+2\right)-x$ is equal to	$\ln \left(\frac{\mathrm{e}^{\mathrm{x}}+2}{\mathrm{x}}\right)$	$\ln (2)$	$\ln \left(\frac{\mathrm{e}^{\mathrm{x}}+2}{\mathrm{e}^{\mathrm{x}}}\right)$
3	Let $I=\int_{0}^{1} \frac{e^{x}}{3+e^{x}} d x$. The value of I is	$\ln \left(\frac{\mathrm{e}+3}{4}\right)$	$\ln \left(\frac{\mathrm{e}+3}{3}\right)$	$\ln (\mathrm{e}+3)$
4	Given below the table of variations of a continuous function f : The equation $\mathrm{f}(\mathrm{x})=4$ has	one root only	two roots	no roots

II- (3 points)

The complex plane is referred to the direct orthonormal system ($0 ; \vec{u}, \vec{v}$).
Consider the points A, B and C with affixes $\mathrm{z}_{\mathrm{A}}=-2+2 \mathrm{i}, \mathrm{z}_{\mathrm{B}}=-2 \mathrm{i}$ and $\mathrm{z}_{\mathrm{C}}=4$.
For every point M with affix z, assign the point M^{\prime} with affix z^{\prime} such that $z^{\prime}=\frac{2 z+4 i}{i z+2+2 i}$ with $z \neq-2+2 i$.

1) In the case where $z=0$, give the exponential form of z^{\prime}.
2) Write $\frac{z_{A}-z_{B}}{z_{C}-z_{B}}$ in algebraic form. Deduce the nature of triangle $A B C$.
3) a- Verify that $\mathrm{z}^{\prime}=\frac{2\left(\mathrm{z}-\mathrm{z}_{\mathrm{B}}\right)}{\mathrm{i}\left(\mathrm{z}-\mathrm{z}_{\mathrm{A}}\right)}$
b- Deduce that $\mathrm{OM}^{\prime}=\frac{2 \mathrm{BM}}{\mathrm{AM}}$
c- Show that when M moves on the perpendicular bisector of $[A B]$, the point M^{\prime} moves on a circle whose center and radius are to be determined.

III- (3 points)

An urn U contains 10 balls: 6 blue balls and 4 red balls.

Part A

Two balls are selected randomly and simultaneously from U .
Consider the following events:
A: "The two selected balls have the same color"
B: "The two selected balls have different colors".

1) Verify that the number of possible outcomes is 45 .
2) Show that the probability $P(A)=\frac{7}{15}$ and deduce $P(B)$.

Part B

In this part, a fair die numbered from 1 to 6 is rolled.

- If the die shows an even number, then two balls are selected randomly and simultaneously from U .
- If the die shows an odd number, then two balls are selected randomly and successively with replacement from U.
Consider the following events:
E: "The die shows an even number"
F: "The selected balls have the same color".

1) Calculate $\mathrm{P}(\mathrm{F} / \mathrm{E})$ and verify that $\mathrm{P}(\mathrm{F} \cap \mathrm{E})=\frac{7}{30}$.
2) Verify that $\mathrm{P}(\mathrm{F} \cap \overline{\mathrm{E}})=\frac{13}{50}$ and deduce $\mathrm{P}(\mathrm{F})$.
3) Knowing that the two selected balls have the same color, calculate the probability that the die shows an even number.

IV- (4 points)

In the following figure,

- ABCD and EDGF are two direct squares.
- $\mathrm{CD}=1$ and $\mathrm{DG}=2$.

Denote by S the direct plane similitude with angle $\frac{\pi}{2}$ that maps B onto D and maps A onto E .

1) Calculate the ratio k of S and show that $S(C)=G$.
2) Denote by (T) and $\left(\mathrm{T}^{\prime}\right)$ the circles with diameters $[\mathrm{BD}]$ and [AE] respectively.
(T) and (T^{\prime}) intersect in two points W and A .

Show that W is the center of S .
3) a- Show that the image of line (BD) by S is the line (DF).
b- Determine the image of line (AD) by S.
c- Show that $S(D)=F$.
4) Let h be the transformation defined as $h=S \circ S$.
a- Determine the nature and the characteristic elements of h.
b- Determine $h(B)$ and deduce that $\overrightarrow{W F}=-4 \overrightarrow{W B}$.
5) The complex plane is referred to a direct orthonormal system $(\mathrm{C} ; \overrightarrow{\mathrm{CD}}, \overrightarrow{\mathrm{CB}})$.
a- Determine the complex form of h.
b- Calculate the affix of point W.

V- (8 points)

Part A

Let g be the function defined on \mathbb{R} as $g(x)=(x+1) e^{x}-1$.

1) Verify that $\lim _{x \rightarrow-\infty} g(x)=-1$ and determine $\lim _{x \rightarrow+\infty} g(x)$.
2) Copy and complete the following table of variations of g :

x	$-\infty$		-2	
$\mathrm{~g}^{\prime}(\mathrm{x})$		-	0	$+\infty$
$\mathrm{g}(\mathrm{x})$				

3) Calculate $\mathrm{g}(0)$. Verify that $\mathrm{g}(\mathrm{x})<0$ for all $\mathrm{x}<0$ and that $\mathrm{g}(\mathrm{x})>0$ for all $\mathrm{x}>0$.

Part B

Let f be the function defined on \mathbb{R} as $f(x)=x\left(e^{x}-1\right)$.
Denote by (C) the representative curve of f in an orthonormal system $(O ; \vec{i}, \vec{j})$.
Let (d) be the line with equation $\mathrm{y}=-\mathrm{x}$.

1) a- Determine $\lim _{x \rightarrow-\infty} f(x)$ and show that (d) is an asymptote to (C).
b- Study the relative positions of (C) and (d).
2) Determine $\lim _{x \rightarrow+\infty} f(x)$ and calculate $f(2)$.
3) Verify that $f^{\prime}(x)=g(x)$ and set up the table of variations of the function f.
4) Show that the curve (C) has a point of inflection I with abscissa -2 .
5) Draw (d) and (C).
6) The equation $\mathrm{f}(\mathrm{x})=1$ has two real roots α and β such that $\alpha<0<\beta$.
a- Prove that $\int \mathrm{xe}^{\mathrm{x}} \mathrm{dx}=(\mathrm{x}-1) \mathrm{e}^{\mathrm{x}}+\mathrm{k}$, with $\mathrm{k} \in \mathbb{R}$.
b- Let $\mathrm{A}(\alpha)$ be the area of the region bounded by the curve (C), (d), the line $\mathrm{x}=\alpha$ and the y -axis. Show that $\mathrm{A}(\alpha)=\left(1+\alpha-\frac{1}{\alpha}\right)$ units of area.

r.rl الاثين	امتحاتات الثهادة الثانموية العامة فرع: العلوم العامة	وزارة الثتربية والتُقليم (العاليم الديرية العامة للتربية دائرة الامتحانــات الرسمية
	أسس تصحيح مسابقة الرياضيات	عدد المسائل: خمس

I	Answers	Mark
1	$\mathrm{f}(\mathrm{x})=\ln \left(\mathrm{x}^{2}-3 \mathrm{x}\right) \cdot \mathrm{x}^{2}-3 \mathrm{x}>0$ then $\mathrm{x}(\mathrm{x}-3)>0$ so $\left.\mathrm{x} \in\right]-\infty ; 0[\mathrm{U}] 3 ;+\infty[$. Then \mathbf{c}	0.5
2	$\ln \left(\mathrm{e}^{\mathrm{x}}+2\right)-\mathrm{x}=\ln \left(\mathrm{e}^{\mathrm{x}}+2\right)-\ln \left(\mathrm{e}^{\mathrm{x}}\right)=\ln \left(\frac{\mathrm{e}^{\mathrm{x}}+2}{\mathrm{e}^{\mathrm{x}}}\right)$. Then \mathbf{c}	0.5
3	$\int_{0}^{1} \frac{\mathrm{e}^{\mathrm{x}}}{3+\mathrm{e}^{\mathrm{x}}} \mathrm{dx}=\left.\ln \left(3+\mathrm{e}^{\mathrm{x}}\right)\right\|_{0} ^{1}=\ln (3+\mathrm{e})-\ln 4=\ln \left(\frac{\mathrm{e}+3}{4}\right)$. Then a	1
	Since f is continuous and strictly decreasing over $[2 ; 4]$ from $3<4$ to $-1<4$ then the equation $\mathrm{f}(\mathrm{x})=4$ has no solution over this interval. Since f is continuous and strictly increasing over $[4 ; 5]$ from $-1<4$ to $6>4$ then the equation $\mathrm{f}(\mathrm{x})=4$ has one root over this interval. Then \mathbf{a}	1

II	Answers	Mark
1	For $\mathrm{z}=0, \mathrm{z}^{\prime}=\frac{4 \mathrm{i}}{2+2 \mathrm{i}}=\sqrt{2} \mathrm{e}^{\mathrm{i} \frac{\pi}{4}}$	1
2	$\frac{\mathrm{z}_{\mathrm{A}}-\mathrm{z}_{\mathrm{B}}}{\mathrm{z}_{\mathrm{C}}-\mathrm{z}_{\mathrm{B}}}=\frac{-2+2 \mathrm{i}+2 \mathrm{i}}{4+2 \mathrm{i}}=\mathrm{i}$. Thus $\left\|\frac{\mathrm{z}_{\mathrm{A}}-\mathrm{z}_{\mathrm{B}}}{\mathrm{z}_{\mathrm{C}}-\mathrm{z}_{\mathrm{B}}}\right\|=1$ and $\arg \left(\frac{\mathrm{z}_{\mathrm{A}}-\mathrm{z}_{\mathrm{B}}}{\mathrm{z}_{\mathrm{C}}-\mathrm{z}_{\mathrm{B}}}\right)=\frac{\pi}{2}(2 \pi)$.	1
Triangle ABC is right isosceles with vertex B.	0.5	
3 a	$\mathrm{z}^{\prime}=\frac{2(\mathrm{z}+2 \mathrm{i})}{\mathrm{i}(\mathrm{z}+2-2 \mathrm{i})}=\frac{2\left(\mathrm{Z}-\mathrm{Z}_{\mathrm{B}}\right)}{\mathrm{i}\left(\mathrm{Z}-\mathrm{Z}_{\mathrm{A}}\right)}$	1
3 b	$\left\|\mathrm{z}^{\prime}\right\|=\frac{\|2\|\left\|\mathrm{Z}-\mathrm{Z}_{\mathrm{B}}\right\|}{\|\mathrm{i}\|\left\|\mathrm{Z}-\mathrm{Z}_{\mathrm{A}}\right\|}=\frac{2 \mathrm{BM}}{\mathrm{AM}}$	1
3 c	$\mathrm{AM}=\mathrm{BM}$ then $\mathrm{OM}^{\prime}=\left\|\mathrm{Z}^{\prime}\right\|=2$, then M^{\prime} varies on the circle with center O and radius 2.	1

III	Answers	Mark
A1	The number of possible outcomes is $\mathrm{C}_{10}^{2}=45$	1
A2	$\begin{aligned} & \mathrm{P}(\mathrm{~A})=\frac{\mathrm{C}_{6}^{2}+\mathrm{C}_{4}^{2}}{\mathrm{C}_{10}^{2}}=\frac{7}{15} \\ & \mathrm{P}(\mathrm{~B})=1-\mathrm{P}(\mathrm{~A})=\frac{8}{15} \text { or } \mathrm{P}(\mathrm{~B})=\frac{\mathrm{C}_{6}^{1} \cdot \mathrm{C}_{4}^{1}}{\mathrm{C}_{10}^{2}}=\frac{8}{15} \end{aligned}$	1
B1	$\begin{aligned} & P(F / E)=P(A)=\frac{C_{6}^{2}+C_{4}^{2}}{C_{10}^{2}}=\frac{7}{15} \\ & P(F \cap E)=P(F / E) \times P(E)=\frac{7}{15} \times \frac{1}{2}=\frac{7}{30} \end{aligned}$	1
B2	$\begin{aligned} & \mathrm{P}(\mathrm{~F} \cap \overline{\mathrm{E}})=\mathrm{P}(\mathrm{~F} / \overline{\mathrm{E}}) \times \mathrm{P}(\overline{\mathrm{E}})=\left(\frac{6 \times 6}{10 \times 10}+\frac{4 \times 4}{10 \times 10}\right) \times \frac{1}{2}=\frac{52}{100} \times \frac{1}{2}=\frac{13}{50} \\ & \mathrm{P}(\mathrm{~F})=\mathrm{P}(\mathrm{~F} \cap \mathrm{E})+\mathrm{P}(\mathrm{~F} \cap \overline{\mathrm{E}})=\frac{7}{30}+\frac{13}{50}=\frac{37}{75} \end{aligned}$	1
B3	$P(E / F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{7}{30}}{\frac{37}{75}}=\frac{35}{74}$	0.5

IV	Answers	Mark
1	$\begin{aligned} & S: B \rightarrow D, A \rightarrow E \text { then the ratio } k=\frac{D E}{A B}=\frac{2}{1}=2 . \\ & (\overrightarrow{\mathrm{BC}} ; \overrightarrow{\mathrm{DG}})=\frac{\pi}{2}[2 \pi], \frac{\mathrm{DG}}{\mathrm{BC}}=2 \text { et } \mathrm{S}(\mathrm{~B})=\mathrm{D} \text { then } \mathrm{S}(\mathrm{C})=\mathrm{G} . \end{aligned}$	1
2	The center of S belongs (T) and (T^{\prime}) because $\alpha=\frac{\pi}{2}$ and $\mathrm{S}(\mathrm{B})=\mathrm{D}$ and $\mathrm{S}(\mathrm{A})=\mathrm{E}$ Then the center is W or A . But $\mathrm{S}(\mathrm{A})=\mathrm{E}$ then A is not invariant by S then W is the center.	1
3a	$\mathrm{S}(\mathrm{BD})=$ line passing through D and perpendicular to (BD), then $\mathrm{S}(\mathrm{BD})=(\mathrm{DF})$	0.5
3b	$\mathrm{S}(\mathrm{AD})=$ line passing through E and perpendicular to (AD), then $\mathrm{S}(\mathrm{AD})=(\mathrm{EF})$	0.5
3c	$\{\mathrm{D}\}=(\mathrm{BD}) \cap(\mathrm{AD})$ then $\{\mathrm{S}(\mathrm{D})\}=\mathrm{S}(\mathrm{BD}) \cap \mathrm{S}(\mathrm{AD})=(\mathrm{DF}) \cap(\mathrm{EF})=\{\mathrm{F}\}$. Then $\mathrm{S}(\mathrm{D})=\mathrm{F}$.	0.5
4a	$\mathrm{h}=\mathrm{S}$ o $\mathrm{S}=\operatorname{Sim}(\mathrm{W}, 4, \pi)=\operatorname{hom}(\mathrm{W},-4)$	0.5
4b	$\begin{aligned} & \mathrm{h}(\mathrm{~B})=\mathrm{S}(\mathrm{~S}(\mathrm{~B}))=\mathrm{S}(\mathrm{D})=\mathrm{F} \\ & \mathrm{~h}(\mathrm{~B})=\mathrm{F}, \text { then } \overrightarrow{\mathrm{WF}}=-4 \overrightarrow{\mathrm{WB}} \end{aligned}$	1
5a	$\begin{aligned} & \mathrm{C}(0 ; 0), \mathrm{D}(1 ; 0), \mathrm{B}(0 ; 1) \text { et } \mathrm{F}(3 ; 2) . \\ & \mathrm{h}: \mathrm{z}^{\prime}=\mathrm{az}+\mathrm{b} \text { then } \mathrm{z}^{\prime}=-4 z+\mathrm{b} . \\ & \mathrm{h}(\mathrm{~B})=\mathrm{F} \text { then } 3+2 \mathrm{i}=-4(\mathrm{i})+\mathrm{b} \text { then } \mathrm{b}=3+6 \mathrm{i} \text { then } \mathrm{z}^{\prime}=-4 \mathrm{z}+3+6 \mathrm{i} \end{aligned}$	0.5
5b	W is invariant, then $\mathrm{z}=-4 \mathrm{z}+3+6 \mathrm{i}$ then $\mathrm{W}\left(\frac{3}{5} ; \frac{6}{5}\right)$	0.5

V	Answers	Mark
A1	$\begin{aligned} & \lim _{x \rightarrow-\infty} g(x)=\lim _{x \rightarrow-\infty}\left[(x+1) e^{x}-1\right]=\lim _{x \rightarrow-\infty}\left(x e^{x}+e^{x}-1\right)=0+0-1=-1 \\ & \text { since } \lim _{x \rightarrow-\infty} e^{x}=0 \text { and } \lim _{x \rightarrow-\infty} x e^{x}=0 . \\ & \lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty}\left[(x+1) e^{x}-1\right]=+\infty . \end{aligned}$	1
A2	$g^{\prime}(x)=e^{x}+(x+1) e^{x}=(x+2) e^{x}$x $-\infty$ -2 0 $+\infty$ $\mathrm{g}^{\prime}(\mathrm{x})$ - 0 + $\mathrm{g}(\mathrm{x})$ -1 	1
A3	$\mathrm{g}(0)=0$ Over $]-\infty ; 0[, \mathrm{~g}(\mathrm{x})<0$ because the maximum of g is less than zero. Over $] 0 ;+\infty[, g(x)>0$ because the minimum of g is greater than zero.	1.5
B1a	$\begin{aligned} & \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}\left[x\left(e^{x}-1\right)\right]=-\infty(0-1)=+\infty \\ & \lim _{x \rightarrow-\infty}[f(x)+x]=\lim _{x \rightarrow-\infty} x e^{x}=0 \end{aligned}$ then (d) is an asymptote to (C) at $-\infty$.	1
B1b	$\mathrm{f}(\mathrm{x})+\mathrm{x}=\mathrm{xe}^{\mathrm{x}}$ If $\mathrm{x} \in]-\infty ; 0[\mathrm{f}(\mathrm{x})+\mathrm{x}<0$, then (C) is below (d) If $\mathrm{x} \in] 0 ;+\infty[, \mathrm{f}(\mathrm{x})+\mathrm{x}>0$, then (C) is above (d) If $\mathrm{x}=0, \mathrm{f}(\mathrm{x})+\mathrm{x}=0$, then (d$)$ and (C) intersect at point O .	1
B2	$\begin{aligned} & \lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left[x\left(e^{x}-1\right)\right]=+\infty(+\infty+1)=+\infty \\ & f(2)=2\left(e^{2}-1\right)=12.77 \end{aligned}$	1

B3	$\begin{gathered} \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}-1+\mathrm{xe}^{\mathrm{x}}=(\mathrm{x}+1) \mathrm{e}^{\mathrm{x}}-1=\mathrm{g}(\mathrm{x}) . \\ \mathrm{x} \\ \mathrm{x} \\ \hline \end{gathered}$	1.5
	$\mathrm{f}^{\prime}(\mathrm{x}) \quad-\quad 0 \quad+$	
	$\mathrm{f}(\mathrm{x})++\infty \longrightarrow+{ }^{+\infty}$	
B4	$f^{\prime \prime}(x)=g^{\prime}(x)$; then $f^{\prime \prime}(x)$ vanishes at -2 and changes its sign, then (C) has a point of inflection $\mathrm{I}\left(-2 ; 2-2 \mathrm{e}^{-2}\right)$.	0.5
B5		1
B6a	$\left[(x-1) \mathrm{e}^{\mathrm{x}}\right]^{\prime}=\mathrm{e}^{\mathrm{x}}+(\mathrm{x}-1) \mathrm{e}^{\mathrm{x}}=\mathrm{xe}^{\mathrm{x}}$, then $\int \mathrm{xe}^{\mathrm{x}} \mathrm{dx}=(\mathrm{x}-1) \mathrm{e}^{\mathrm{x}}+\mathrm{k}$, with $\mathrm{k} \in \mathbb{R}$.	1
B6b	Over $[-2 ; 0]$, (C) is below (d), then $A=\int_{\alpha}^{0}(-x-f(x)) d x=\int_{\alpha}^{0}-x e^{x} d x=\left[(1-x) e^{x}\right]_{\alpha}^{0}=1-$ $(1-\alpha) \mathrm{e}^{\alpha}$ but $\mathrm{f}(\alpha)=1$ then $\alpha\left(\mathrm{e}^{\alpha}-1\right)=1$ then $\mathrm{e}^{\alpha}=\frac{1}{\alpha}+1$ Then $\mathrm{A}(\alpha)=1-(1-\alpha)\left(\frac{1}{\alpha}+1\right)=1-\frac{1}{\alpha}-1+1+\alpha=1+\alpha-\frac{1}{\alpha}$ units of area.	1.5

