امتحانات الشهادة الثانوية العامّة فرع: الإجتماع والإقتصاد

وزارة التربية والتعليم العالي المديريّة العامة للتربية دائرة الامتحانات الرسمية

الاسم:	مسابقة في مادة الرياضيات	
الرقم:	المدة: ساعة ونصف	

ملاحظة: - يتكوّن هذا الإمتحان من ست مسائل، يجب اختيار أربع مسائل منها فقط.

- في حال الإجابة عن أكثر من أربع مسائل، عليك شطب الإجابات المتعلّقة بالمسألة التي لم تعد من ضمن اختيارك، لأنّ التصحيح سيقتصر على إجابات المسائل الأربعة الأولى غير المشطوبة.
 - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات.
 - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- Série statistique à deux variables (5 points)

Le tableau ci-dessous représente le nombre moyen des utilisateurs de l'intelligence artificielle (AI), dans le monde, y_i en millions en fonction du rang de l'année x_i de 2019 à 2024.

Année	2019	2020	2021	2022	2023	2024
Rang de l'année : x _i	1	2	3	4	5	6
Nombre des utilisateurs en millions : yi	80	100	120	150	200	240

Toutes les valeurs sont arrondies à 10^{-2} près.

- 1) Calculer le pourcentage d'augmentation des utilisateurs de l'intelligence artificielle de 2023 à 2024.
- 2) Calculer les coordonnées \bar{x} et \bar{y} de G, le point moyen de la série statistique $(x_i; y_i)$.
- 3) Déterminer le coefficient de corrélation r et interpréter le résultat obtenu.
- 4) Ecrire une équation de la droite de régression $(D_{y/x})$ de y en fonction x.
- 5) Le modèle précédent reste valable jusqu'à l'année 2030. Supposons que le nombre moyen des utilisateurs de l'intelligence artificielle au Liban est 1% de celui du monde.

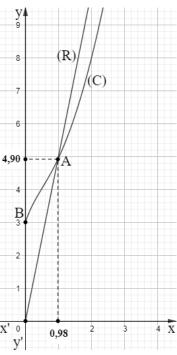
À partir de quelle année le nombre moyen des utilisateurs de l'intelligence artificielle au Liban dépassera-il 3 millions ? Justifier.

II- Fonctions exponentielles (5 points)

On considère la fonction f définie sur $]-\infty$; $+\infty[$ par $f(x)=x+e^{-x+1}$ et on note par (C) sa courbe représentative dans un repère orthonormé $(O;\vec{i},\vec{j})$. Soit (d) la droite d'équation y=x.

- 1) a) Déterminer $\lim_{x \to +\infty} f(x)$.
 - **b)** Montrer que (d) est une asymptote oblique à (C) en $+\infty$.
 - c) Montrer que (C) est au-dessus de (d) pour toutes les valeurs de x.
- 2) a) Calculer f'(x).
 - **b)** Résoudre f '(x) = 0.
 - c) Ecrire une équation de la tangente (T) à (C) en son point d'abscisse 1.
 - d) Copier puis compléter le tableau de variations de la fonction f.

X	$-\infty$				$+\infty$
f '(x)		_	0	+	
f(x)	+ ∞				


- 3) a) Calculer f(-1) et f(0).
 - **b**) Tracer (d) et (C).

III- Coût, Revenu et Profit (5 points)

Une compagnie fabrique un certain type d'objets.

Dans la figure ci-contre:

- La courbe (C) représente la fonction du coût total C.
- La droite (R) représente la fonction du revenu R.
- (C) et (R) se coupent au point A(0,98; 4,90).
- (C) coupe y'y au point B(0; 3).
- x est la quantité fabriquée, en milliers d'objets, où $0 \le x \le 4$.
- C(x) et R(x) sont exprimées en 10 millions LL.
- 1) En utilisant la figure, répondre aux questions ci-dessous.
 - a) Déterminer, en LL, les coûts fixes de cette compagnie.
 - **b**) Estimer, en LL, le coût moyen d'un objet pour une fabrication de 980 objets.
 - c) Donner une interprétation économique de l'abscisse de A.
- 2) Supposons dans cette partie que R(x) = 5x et $C(x) = x^2 e^{-3x} + 4$.
 - a) Exprimer en fonction de x la fonction du profit P.
 - **b**) Calculer P(0,5). Déduire que la compagnie ne réalise pas un gain pour ce niveau de production.

IV- Fonctions Logarithmes, Exponentielles et Économiques (5 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte.

Ecrire le numéro de chaque question et donner, avec justification, la réponse qui lui correspond.

Nº	Questions	Réponses proposées				
11	Questions	a	b	c		
1	Pour $a > 0$, $\ln(3a) - \ln\left(\frac{3}{e}\right) =$	1 + ln(a)	-1 - ln(a)	$\ln\left(3a - \frac{3}{e}\right)$		
2	Soit f la fonction donnée par $f(x) = \ln(x - 1) + \ln(-x + 3)$. Le domaine de définition de f est] - ∞;3[]1;3[]1;+∞[
3	Le coût total de production, en millions LL, de x objets est exprimé par $C(x) = x^2 - e^{-5x} + 2 \text{ où } 0 \le x \le 10.$ Le coût marginal, en millions LL, pour une production de 6 objets est	$\frac{38 - e^{-30}}{6}$	12 + 5e ⁻³⁰	$38 - e^{-30}$		
4	L'élasticité de la demande d'un certain produit par rapport au prix unitaire x est modélisée par $E(x) = \frac{-1}{2 - \ln(x)} \text{ où } 0 < x < 6.$ Si la demande est parfaitement élastique alors le prix unitaire est	$\frac{1}{e}$	1	e		

V- Offre, Demande et Elasticité (5 points)

Une compagnie fabrique des unités d'un certain produit.

Les fonctions de demande f et de l'offre g définies sur [0,1;6], sont respectivement données par $f(x) = (x+12)e^{-x+1}$ et g(x) = x+12 où f(x) et g(x) sont exprimées en milliers d'unités et le prix x d'une unité est exprimé en 100 millions LL.

- 1) Calculer le nombre d'unités demandées pour un prix unitaire de 300 000 000 LL.
- 2) Trouver le prix unitaire pour une offre de 14 000 unités.
- 3) a) Prouver que le prix d'équilibre est 100 000 000 LL.
 - b) Déduire le nombre d'unités correspondantes.
- 4) On note par E(x) l'élasticité de la demande par rapport au prix unitaire x.
 - a) On sait que f'(x) = $(-x 11)e^{-x+1}$, montrer que E(x) = $\frac{-x^2 11x}{x + 12}$.
 - **b**) Calculer E(3). Est-ce que la demande est élastique ? Justifier.
 - c) Le prix unitaire de 300 millions LL augmente de 1%. Calculer alors le nombre d'unités demandées.

VI- Dénombrement et Probabilité (5 points)

Les élèves des classes terminales d'une école sont répartis en trois sections : SG, SV et SE.

Tous les élèves de ces classes vont présenter l'examen officiel où l'Histoire est une matière facultative.

La direction de cette école a collecté les informations suivantes :

- 20% des élèves sont en SG, parmi eux 30% ont choisi l'Histoire.
- 30% des élèves sont en SV, parmi eux 40% ont choisi l'Histoire.
- Les autres élèves sont en SE, parmi eux 80% ont choisi l'Histoire.

On interroge au hasard un élève de ces classes terminales.

On considère les événements suivants :

G: « L'élève interrogé est en SG »

V : « L'élève interrogé est en SV »

E: « L'élève interrogé est en SE »

H: « L'élève interrogé a choisi l'Histoire ».

- 1) a) Calculer les probabilités $P(V \cap H)$ et $P(G \cap H)$.
 - **b)** Montrer que $P(E \cap H) = 0.4$.
 - c) Déduire que P(H) = 0.58.
- 2) L'élève interrogé a choisi l'Histoire. Calculer la probabilité qu'il soit en SE.
- 3) Le nombre d'élèves de ces classes terminales est 200.
 - a) Copier et compléter le tableau suivant :

	SG	SV	SE	Total
Le nombre d'élèves qui ont				
choisi l'Histoire				
Le nombre d'élèves qui	28	36		
n'ont pas choisi l'Histoire	28	30		
Total			100	200

b) On interroge au hasard un groupe de 3 élèves de ces classes terminales. Calculer la probabilité qu'un élève seulement soit en SE et que les deux autres n'aient pas choisi l'Histoire.

أسس تصحيح مسابقة الرياضيات

Q.I	Réponses	6.25 pts
1	$\frac{240-200}{200} \times 100 = 20$ donc le pourcentage d'augmentation est 20%	1,5
2	$\overline{x} = 3.5$ et $\overline{y} = 148,33$ donc G(3,5; 148,33)	1
3	$r = 0.98 \approx 1$ alors il y a une forte relation linéaire positive entre x et y.	1,5
4	$(D_{y/x})$: y = 32,28x + 35,33	1
5	0.01y > 3 alors $y > 300$, donc $32.28x + 35.33 > 300$, alors $x > 8.1Donc x = 9. Alors en 2027.$	1,25
Q.II	Réponses	6,25 pts
1a	$\lim_{x \to +\infty} f(x) = +\infty + 0 = +\infty$	0,5
1b	$\lim_{x \to +\infty} (f(x) - y_d) = \lim_{x \to +\infty} e^{-x+1} = 0$ Donc (d): $y = x$ est une asymptote oblique à (C) en $+\infty$.	0,75
1c	$f(x) - y_d = e^{-x+1} > 0$ pour toutes les valeurs de x, donc (C) est au-dessus de (d) pour toutes les valeurs de x	0,5
2a	$f'(x) = 1 - e^{-x+1}$	0,5
2b	$f'(x) = 0$, donc $e^{-x+1} = 1$, alors $-x + 1 = 0$, d'où $x = 1$.	0,75
2c	f'(1) = 0, donc (T) est parallèle à l'axe des abscisses. f(1) = 2. Donc (T): $y = 2$.	0,75
2d	$ \begin{array}{c cccc} x & -\infty & 1 & +\infty \\ \hline f'(x) & - & 0 & + \\ \hline f(x) & +\infty & +\infty \end{array} $	0,5
3a	$f(0) = e \approx 2.7$ et $f(-1) = -1 + e^2 \approx 6.38$	0,5
3b	-2 -1 0 1 2 3 4 5 6 7 8	1,5
Q.III	Réponses	6,25 pts
1a	$C_F = C(0) = 3$ en millions LL = 3 000 000 LL	1,5
1b	$C_M(0.98) = \frac{C(0.98)}{0.98} = \frac{4.90}{0.98} = 5 \text{ en } 10 \text{ millions LL.}$ Donc le coût moyen d'un objet pour une fabrication de 980 objets est $\frac{50000000}{1000} = 50.000 \text{ LL}$	1,5

1c	x _A = 0,98 En A, C = R, donc l'abscisse de A représente le seuil de rentabilité de cette production. Le seuil de rentabilité de cette production est donc 980 objets.					1,25
2a	$P(x) = R(x) - C(x) = 5x - x^2 + e^{-3x} - 4$					1
2b	P(0,5) = -1.52 Comme $P(0,5) = -1.52 < 0$, Donc la compagnie ne réalise pas		ur une produ	ction de 500) objets.	0,5 0,5
Q.IV		Répons	ses			6,25 pts
1	$\ln(3a) - \ln\left(\frac{3}{e}\right) = \ln 3 + \ln a - 1$	n 3 + 1 = l	na+1 F	Réponse : a		1,5
2	x - 1 > 0 et $-x + 3 > 0$, donc	1 < x < 3.	Réponse :	b		1,75
3	$C(x) = x^2 - e^{-5x} + 2$ $C_m(x) = 2x + 5e^{-5x}$ donc C_m					1,5
4	$E(x) = -1$, donc $\frac{1}{2 - \ln(x)} = 1$, ald b	ors 2 – ln x	$= 1$, $\ln x =$	1, donc x =	e. Réponse :	1,5
Q.V		Répons				6,25 pts
1	Le nombre d'unités demandées pour un prix unitaire de 300 000 000 LL est $f(3) \times 10^3 = 2.03 \times 1000 = 2030$ unités					1
2	x + 12 = 14 donc $x = 2alors le prix unitaire pour une offre de 14 000 unités est 200 000 000 LL$					1
3a	f(1) = g(1) = 13, donc la quantité demandée est égale à la quantité offerte pour $x = 1$. Le prix d'équilibre est alors $100\ 000\ 000\ LL$					1
3b						0,5
4a	$y(-y-11)e^{-x+1} - y^2 - 11y$					0,75
4b	$E(3) = -\frac{14}{5} < -1$ donc la demande est élastique.					1
4c	Le nombre d'unités demandées est $f(3) \times 10^3 \times \frac{100 - \frac{14}{5}}{100} \cong 1973$ unités					1
Q.VI	Réponses					6,25 pts
1a	$P(V \cap H) = P(V) \times P(H/V) = 0.3 \times 0.4 = 0.12$ $P(G \cap H) = P(G) \times P(H/G) = 0.2 \times 0.3 = 0.06$					0,75 0,75
1b	$P(E \cap H) = P(E) \times P(H/E) = 0.5 \times 0.8 = 0.4$					0,75
1c	$P(H) = P(E \cap H) + P(V \cap H) + P(G \cap H) = 0.06 + 0.12 + 0.4 = 0.58$					0,75
2	$P(E/H) = \frac{P(E \cap H)}{P(H)} = \frac{0.4}{0.58} = \frac{20}{29}$					1,25
		SG	SV	SE	Total	
3a	Le nombre d'élèves qui ont choisi l'Histoire	12	24	80	116	1
	Le nombre d'élèves qui n'ont pas choisi l'Histoire	28	36	20	84	
	Total	40	60	100	200	
3b	$P(T) = \frac{C_{100}^1 \times C_{64}^2}{C_{200}^3} = \frac{336}{2189}$					1