دورة العام ٢٠٢١ الاستثنائية الإثنين ٦ أيلول ٢٠٢١

امتحانات الشهادة الثانوية العامة فرعا: الاجتماع والاقتصاد والآداب والإنسانيات وزارة التربية والتعليم العال المديرية العامة للتربية دائرة الامتحانات الرسميّة

مسابقة في الثقافة العلمية: مادة الفيزياء المدة: ساعة واحدة

This exam is formed of three obligatory exercises in two pages. The use of non-programmable calculator is recommended.

Exercise 1 (7¹/₂ pts)

Bouncing of a ball

Consider a ball taken as a particle (S) of mass m = 100 g. (S) is suspended from the lower end of

an inextensible massless string, of length 1 m, whose upper end is attached to a fixed point O.

الاسم:

الرقم:

The system [(S) - String] is shifted from its equilibrium position by an angle of 90° , and then (S) is released from rest from point A of height $h_A = 1$ m above the ground. (S) reaches the ground at point C (Doc. 1). Air resistance is neglected during the motion of (S). The aim of this exercise is to study whether (S) is suitable for a certain sports game.

Take:

the horizontal plane containing C as a reference • level for the gravitational potential energy of the system [(S) - Earth];

- $g = 10 \text{ m/s}^2$.
- 1) Calculate the kinetic energy KE_A of (S) at A.
- 2) Calculate the gravitational potential energy GPE_A of the system [(S) String Earth] at A.
- 3) Show that the mechanical energy ME_A of the system [(S) String Earth] at A is ME_A = 1 J.
- 4) The mechanical energy of the system [(S) String Earth] is conserved during the motion of (S)from A to C. Why?
- 5) As (S) reaches the ground at point C, it collides with a plate (P) fixed at the ground. During this collision the system [(S) - String - Earth] loses 55 % of its mechanical energy, and then (S) bounces back and attains a new maximum height h_B.
 - 5.1) Calculate the mechanical energy of the system [(S) String Earth] after the collision with the plate (P).
 - **5.2**) Deduce that $h_{B} = 0.45$ m.
- 6) Calculate the ratio $\frac{h_B}{h_A}$.
- 7) The ball (S) is suitable to be used in a certain sports game if the bouncing ratio is $r = \frac{h_B}{h_A} = 0.54$.

Deduce whether (S) is suitable for this game.

Exercise 2 (6 ¹/₂ pts)

The age of the lunar rocks

The aim of this exercise is to determine the age of the lunar rocks brought back by the Apollo XI astronauts. A sample (A) of this rock is collected. This sample contains certain quantities of the radioactive isotope, potassium-40 ($_{19}^{40}$ K), as well as the product obtained by its disintegration,

argon-40 ($^{40}_{18}$ Ar).

- 1) Define radioactivity.
- 2) Indicate the composition (number of protons and number of neutrons) of potassium-40.

3) One of the decay equations of potassium-40 is: ${}^{40}_{19}\text{K} \rightarrow {}^{40}_{18}\text{Ar} + {}^{A}_{Z}X$.

Calculate Z and A indicating the used laws.

- 4) Indicate the name and the symbol of the emitted particle.
- **5**) The half-life (period) of potassium-40 is: $T = 1.25 \times 10^9$ years.
 - **5.1**) Define the half-life of a radioactive substance.
 - **5.2)** Given that $m_1 = \frac{1}{8} m_0$, where m_1 is the mass of potassium-40 found in the sample (A)

and m_0 is the initial mass of potassium-40 present in the sample (A) when it is formed at $t_0 = 0$. Determine the age of this sample.

Exercise 3 (6 pts)

Electric energy produced in a nuclear power plant

A nuclear power plant generates electricity from the nuclear energy produced inside its nuclear reactors. Suppose that the nuclear reaction that takes place inside a reactor is:

$$^{235}_{92}$$
U + $^{1}_{0}$ n $\rightarrow \,^{144}_{56}$ Ba + $^{89}_{36}$ Kr + 3^{1}_{0} n

Given:

Particle or Nucleus	${}^{1}_{0}n$	²³⁵ ₉₂ U	¹⁴⁴ ₅₆ Ba	$_{36}^{89}$ Kr
Mass in u	1.008	234.994	143.922	88.917

Speed of light in vacuum $c = 3 \times 10^8$ m/s ; $1u = 1.66 \times 10^{-27}$ kg ; $1 \text{MeV} = 1.6 \times 10^{-13}$ J.

1) The above nuclear reaction is fission. Justify.

- 2) Show that the loss of mass in this reaction is $\Delta m = 0.139 \text{ u.}$
- 3) Determine, in joules, the energy E liberated by this reaction.
- 4) Show that the value of this energy in MeV is $E \approx 129.8$ MeV.
- 5) Knowing that 34% of the nuclear energy E is transformed into electrical energy E', calculate E' in MeV.

امتحانات الشهادة الثانوية العامة فرعا: الإجتماع والاقتصاد والآداب والإنسانيات مسابقة في الثقافة العلمية: مادة الفيزياء وزارة التربية والتعليم العالي المديرية العامّة للتربية دائرة الامتحانات الرسميّة

أسس التصحيح – أنكليزي

Exercise 1 (7 ¹/₂ pts)

Bouncing of a ball

Part		Answer	Mark
1 $KE_A = \frac{1}{2}mv^2 = 0 m/s$		$KE_{A} = \frac{1}{2}mv^{2} = 0 m/s$	1
2		$GPE_A = mgh_A = 0.1 \times 10 \times 1 = 1 \text{ J}$	1
3		$ME_A = KE_A + GPE_A = 0 + 1 = 1 J$	1
4 The air resistance is neglected.		0.5	
5	5.1	The remaining mechanical energy just after the collision is: ME' = $0.45 \times 1 = 0.45$ J	1
	5.2	$ME' = KE' + GPE' 0.45 = 0 + mgh_{A'}, h_{A'} = 0.45 m$	1
6 $r = \frac{h_{A'}}{h_A} = r = \frac{0.45}{1} = 0.45$		$r = \frac{h_{A'}}{h_A} = r = \frac{0.45}{1} = 0.45$	1
7		No, since $r \neq 0.54$	1

Exercise 2 (6 ¹/₂ pts)

The age of the lunar rocks

Pa	nrt	Answer	
]	1	The radioactivity is a spontaneous transformation of a nucleus into another one, with emission of radioactive radiation.	
	2	Number of protons $Z = 19$, number of neutrons $N = 21$	
3		According to the law of conservation of mass number : $40 = 40 + A$; $A = 0$ According to the law of conservation of atomic number: $19 = 18 + Z$; $Z = 1$ ${}^{40}_{19}K \rightarrow {}^{40}_{18}Ar + {}^{0}_{+1}X$	0.5 0.5
2	4 Name : Positron Symbol : $_{\pm 1}^{0}$ e		0.5 0.5
5	5.1	The half-life of a radioactive substance is the time after which half of the radioactive substance is disintegrated.	1
	5.2	$\frac{m_i}{m_f} = 2^n, \frac{m_i}{\frac{1}{8}m_i} = 2^n, 2^3 = 2^n, n = 3$ Therefore : t = nT = 3 × 1.25 × 10 ⁹ years = 3.84 × 10 ⁹ years	2

Exercise 3 (6 pts)

Electric energy produced in a nuclear power plant

Part	Answer	Mark
1	This is a provoked nuclear reaction in which a heavy nucleus is divided into two lighter nuclei under the impact of a neutron.	1
2	$\Delta m = m_{before} - m_{after} = (234.994 + 1.008) - (143.922 + 88.917 + 3 \times 1.008)$ Then : $\Delta m = 0.139$ u	1
3	$ \begin{split} & E = \Delta m \times c^2 \\ & \Delta m = 0.139 \times 1.66 \times 10^{-27} = 0.2307 \times 10^{-27} \text{ kg} \\ & E = 0.2307 \times 10^{-27} \times (3 \times 10^8)^2 = 2.0766 \times 10^{-11} \text{ J} \end{split} $	2
4	$E = 2.0766 \times 10^{-11} / 1.6 \times 10^{-13} = 129.79 \text{ MeV} \approx 129.8 \text{ MeV}$	1
5	$E' = 0.34 \times 129.8 \text{ MeV} = 44.132 \text{ MeV}$	1