دائرة الامتحانـات الرسميّة

الالسم:	مسابقةّ في الثقافةّ العلميةّ: مادة (الفيزيـاء
الرقم:	'المدة: سـاعة واحدة

This exam is formed of three obligatory exercises in two pages. The use of non-programmable calculator is recommended.

Exercise 1 (7 ½ pts)

Bouncing of a ball

Consider a ball taken as a particle (S) of mass $\mathrm{m}=100 \mathrm{~g}$. (S) is suspended from the lower end of an inextensible massless string, of length 1 m , whose upper end is attached to a fixed point O .
The system [(S) - String] is shifted from its equilibrium position by an angle of 90°, and then (S) is released from rest from point A of height $h_{A}=1 \mathrm{~m}$ above the ground. (S) reaches the ground at point C (Doc. 1). Air resistance is neglected during the motion of (S). The aim of this exercise is to study whether (S) is suitable for a certain sports game.
Take:

- the horizontal plane containing C as a reference level for the gravitational potential energy of the
 system [(S) - Earth];
- $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

1) Calculate the kinetic energy KE_{A} of (S) at A .
2) Calculate the gravitational potential energy GPE $_{A}$ of the system [(S) - String - Earth] at A.
3) Show that the mechanical energy ME_{A} of the system [(S)-String - Earth] at A is $\mathrm{ME}_{\mathrm{A}}=1 \mathrm{~J}$.
4) The mechanical energy of the system $[(S)$ - String - Earth $]$ is conserved during the motion of (S) from A to C. Why?
5) As (S) reaches the ground at point C, it collides with a plate (P) fixed at the ground. During this collision the system [(S) - String - Earth] loses 55% of its mechanical energy, and then (S) bounces back and attains a new maximum height h_{B}.
5.1) Calculate the mechanical energy of the system [(S) - String - Earth] after the collision with the plate (P).
5.2) Deduce that $h_{B}=0.45 \mathrm{~m}$.
6) Calculate the ratio $\frac{\mathrm{h}_{B}}{\mathrm{~h}_{\mathrm{A}}}$.
7) The ball (S) is suitable to be used in a certain sports game if the bouncing ratio is $r=\frac{h_{B}}{h_{A}}=0.54$. Deduce whether (S) is suitable for this game.

Exercise 2 ($6^{1 ⁄ 2}$ pts)

The age of the lunar rocks

The aim of this exercise is to determine the age of the lunar rocks brought back by the Apollo XI astronauts. A sample (A) of this rock is collected. This sample contains certain quantities of the radioactive isotope, potassium- $40\left({ }_{19}^{40} \mathrm{~K}\right)$, as well as the product obtained by its disintegration, $\operatorname{argon-40}\left({ }_{18}^{40} \mathrm{Ar}\right)$.

1) Define radioactivity.
2) Indicate the composition (number of protons and number of neutrons) of potassium-40.
3) One of the decay equations of potassium-40 is: ${ }_{19}^{40} \mathrm{~K} \rightarrow{ }_{18}^{40} \mathrm{Ar}+{ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}$.

Calculate Z and A indicating the used laws.
4) Indicate the name and the symbol of the emitted particle.
5) The half-life (period) of potassium- 40 is: $\mathrm{T}=1.25 \times 10^{9}$ years.
5.1) Define the half-life of a radioactive substance.
5.2) Given that $m_{1}=\frac{1}{8} m_{0}$, where m_{1} is the mass of potassium- 40 found in the sample (A) and m_{0} is the initial mass of potassium-40 present in the sample (A) when it is formed at $\mathrm{t}_{0}=0$. Determine the age of this sample.

Exercise 3 (6 pts)

Electric energy produced in a nuclear power plant

A nuclear power plant generates electricity from the nuclear energy produced inside its nuclear reactors. Suppose that the nuclear reaction that takes place inside a reactor is:

$$
{ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{56}^{144} \mathrm{Ba}+{ }_{36}^{89} \mathrm{Kr}+3{ }_{0}^{1} \mathrm{n}
$$

Given:

Particle or Nucleus	${ }_{0}^{1} \mathrm{n}$	${ }_{92}^{235} \mathrm{U}$	${ }_{56}^{144} \mathrm{Ba}$	${ }_{36}^{89} \mathrm{Kr}$
Mass in u	1.008	234.994	143.922	88.917

Speed of light in vacuum $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} ; 1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg} ; 1 \mathrm{MeV}=1.6 \times 10^{-13} \mathrm{~J}$.

1) The above nuclear reaction is fission. Justify.
2) Show that the loss of mass in this reaction is $\Delta \mathrm{m}=0.139 \mathrm{u}$.
3) Determine, in joules, the energy E liberated by this reaction.
4) Show that the value of this energy in MeV is $\mathrm{E} \cong 129.8 \mathrm{MeV}$.
5) Knowing that 34% of the nuclear energy E is transformed into electrical energy E^{\prime}, calculate E^{\prime} in MeV .

امتحانـات الثنـهادة الثثانوية العامـة
فرعا: الإجنمـاع والاقتصاد
والآداب والإنسانيـات

وزارة التربية والتعليم العالي المديرية العامّة للتربية
دائرة الامتحانـات الرسميّة
التصحيح - أنكليزي

Exercise 1 ($\mathbf{7 1}^{1 / 2} \mathbf{~ p t s)}$

Part	Answer	Mark
$\mathbf{1}$	$\mathrm{KE}_{\mathrm{A}}=\frac{1}{2} \mathrm{mv}^{2}=0 \mathrm{~m} / \mathrm{s}$	$\mathbf{1}$
$\mathbf{2}$	$\mathrm{GPE}_{\mathrm{A}}=\mathrm{mgh}_{\mathrm{A}}=0.1 \times 10 \times 1=1 \mathrm{~J}$	$\mathbf{1}$
$\mathbf{3}$	$\mathrm{ME}_{\mathrm{A}}=\mathrm{KE}_{\mathrm{A}}+\mathrm{GPE}_{\mathrm{A}}=0+1=1 \mathrm{~J}$	$\mathbf{1}$
$\mathbf{4}$	The air resistance is neglected.	$\mathbf{0 . 5}$
$\mathbf{5}$	$\mathbf{5 . 1}$	The remaining mechanical energy just after the collision is: $\mathrm{ME}^{\prime}=0.45 \times 1=0.45 \mathrm{~J}$
	$\mathrm{ME}^{\prime}=\mathrm{KE}^{\prime}+\mathrm{GPE}^{\prime}$ $0.45=0+\mathrm{mgh}_{\mathrm{A}^{\prime}}, \mathrm{h}_{\mathrm{A}^{\prime}}=0.45 \mathrm{~m}$	$\mathbf{1}$
	$\mathrm{r}=\frac{\mathrm{h}_{\mathrm{A}^{\prime}}}{\mathrm{h}_{\mathrm{A}}}=\mathrm{r}=\frac{0.45}{1}=0.45$	$\mathbf{1}$
$\mathbf{7}$	No, since $\mathrm{r} \neq 0.54$	$\mathbf{1}$

Exercise 2 ($6^{1 ⁄ 2}$ pts)

The age of the lunar rocks

Part		Answer	Mark
1		The radioactivity is a spontaneous transformation of a nucleus into another one, with emission of radioactive radiation.	1
2		Number of protons Z $=19$, number of neutrons $\mathrm{N}=21$	0.5
3		According to the law of conservation of mass number : $40=40+\mathrm{A} ; \mathrm{A}=0$ According to the law of conservation of atomic number: $19=18+\mathrm{Z} ; \mathrm{Z}=1$ ${ }_{19}^{40} \mathrm{~K} \rightarrow{ }_{18}^{40} \mathrm{Ar}+{ }_{+1}^{0} \mathrm{X}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$
4		Name : Positron Symbol : ${ }_{+1}^{0} \mathrm{e}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$
5	5.1	The half-life of a radioactive substance is the time after which half of the radioactive substance is disintegrated.	1
	5.2	$\frac{m_{i}}{m_{f}}=2^{n}, \frac{m_{i}}{\frac{1}{8} m_{i}}=2^{n}, 2^{3}=2^{n}, n=3$ Therefore : $\mathrm{t}=\mathrm{nT}=3 \times 1.25 \times 10^{9}$ years $=3.84 \times 10^{9}$ years	2

Exercise 3 (6 pts)
Electric energy produced in a nuclear power plant

Part	Answer	Mark
$\mathbf{1}$	This is a provoked nuclear reaction in which a heavy nucleus is divided into two lighter nuclei under the impact of a neutron.	$\mathbf{1}$
$\mathbf{2}$	$\Delta \mathrm{m}=\mathrm{m}_{\text {before }}-\mathrm{m}_{\text {after }}=(234.994+1.008)-(143.922+88.917+3 \times 1.008)$ Then $: \Delta \mathrm{m}=0.139 \mathrm{u}$	$\mathbf{1}$
$\mathbf{3}$	$\mathrm{E}=\Delta \mathrm{m} \times \mathrm{c}^{2}$ $\Delta \mathrm{~m}=0.139 \times 1.66 \times 10^{-27}=0.2307 \times 10^{-27} \mathrm{~kg}$ $\mathrm{E}=0.2307 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2}=2.0766 \times 10^{-11} \mathrm{~J}$	$\mathbf{2}$
$\mathbf{4}$	$\mathrm{E}=2.0766 \times 10^{-11} / 1.6 \times 10^{-13}=129.79 \mathrm{MeV} \approx 129.8 \mathrm{MeV}$	$\mathbf{1}$
$\mathbf{5}$	$\mathrm{E}=0.34 \times 129.8 \mathrm{MeV}=44.132 \mathrm{MeV}$	$\mathbf{1}$

