امتحانات الشهادة الثانوية العامّة فرع: الآداب والانسانيات

وزارة التربية والتعليم العالي المديريّة العامة للتربية دائرة الامتحانات الرسمية

الاسم:	مسابقة في مادة الرياضيات			
الرقم:	المدة: ساعة واحدة			
	· · · · · · · · · · · · · · · · · ·	 ۶	 _	* *

ملاحظة: - يتكوّن هذا الإمتحان من أربع مسائل، يجب اختيار مسألتين منها فقط.

- في حال الإجابة عن أكثر من مسألتين، عليك شطب الإجابات المتعلّقة بالمسألة التي لم تعد من ضمن اختيارك، لأنّ التصحيح سيقتصر على إجابات أوّل مسألتين غير مشطوبتين.
 - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات.
 - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- Functions (10 points)

Consider the function f defined over $]-\infty$, $0[\cup]0$, $+\infty[$ as $f(x) = \frac{x^2+1}{x}$ and denote by (C) its representative curve in an orthonormal system (O; \vec{i} , \vec{j}). Let (d) be the line with equation y = x.

- 1) a) Determine $\lim_{\substack{x\to 0 \ x\to 0}} f(x)$ and $\lim_{\substack{x\to 0 \ x\to 0}} f(x)$.
 - **b**) Deduce an equation of an asymptote to (C).
- 2) Given that $f(x) = x + \frac{1}{x}$.
 - a) Determine $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to +\infty} f(x)$.
 - **b)** Show that (d) is an oblique asymptote to (C) at $+\infty$ and at $-\infty$.
- 3) a) Verify that $f'(x) = \frac{x^2 1}{x^2}$.
 - **b)** Copy and complete the following table of variations of f:

		_		_		
	X	- ∞	-1	0	1	$+\infty$
	f '(x)		0		0	_
•	f(x)					

4) Draw (d) and (C).

II- Statistics (10 points)

The following table shows the distribution of grades (out of 20) of the students of a given class.

Grades	[0,5[[5, 10[[10, 15[[15, 20]	
Number of students	4	5	8	3	

- 1) What is the number of students whose grades are greater than or equal to 10?
- 2) Calculate the mean grade of these students.
- 3) a) Construct a frequency histogram.
 - **b)** Find the modal class.
 - c) Find, graphically the mode. Interpret the obtained result.
- 4) a) Set up the increasing cumulative frequency table.
 - **b)** Find the median class.

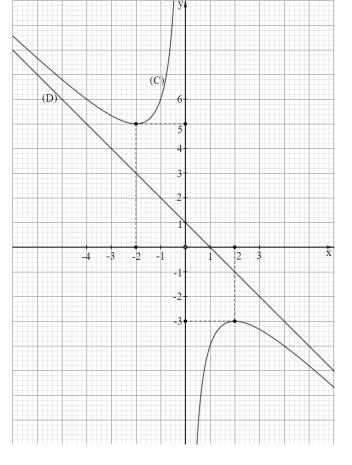
III- Probability (10 points)

The following table shows the types of movies preferred by 100 students at a school.

	Science fiction	Drama	Horror	Total
Girls	15	33	9	57
Boys	16	17	10	43
Total	31	50	19	100

- 1) One student is randomly selected and interviewed. Consider the following events:
 - B: "The interviewed student is a boy"
 - S: "The interviewed student prefers Science fiction movies".
 - a) Calculate the probabilities P(S) and P(B).
 - **b**) Calculate $P(S \cap B)$ and $P(S \cup B)$.
 - c) Calculate P(S / B).
- 2) Two students are randomly and successively selected and interviewed one after the other.
 - **a)** Calculate the probability that the first student prefers the Science fiction movies and the second student prefers the horror movies.
 - **b**) Calculate the probability that the two students prefer horror movies.

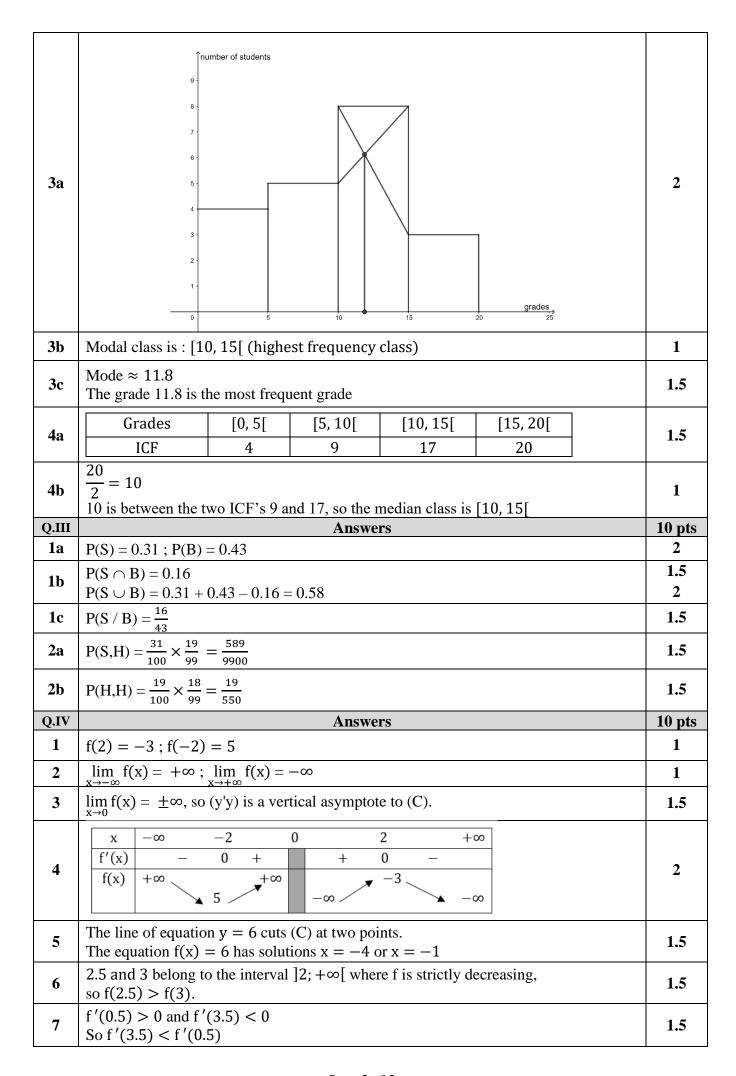
IV- Functions (10 points)


The plane is referred to an orthonormal system (O; \vec{i} , \vec{j}). The curve (C) in the adjacent figure represents a function f defined over]– ∞ , 0[\cup]0 , + ∞ [.

The line (D) is an asymptote to (C) at $+\infty$ and at $-\infty$.

- 1) Find f(2) and f(-2).
- 2) Determine $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to +\infty} f(x)$.
- 3) Show that the y-axis is an asymptote to (C).
- **4)** Copy and complete the table of variations of f:

X	- ∞	-2	0	2	+ ∞
f '(x)		0		0	
f(x)					


- 5) Find the solutions of the equation f(x) = 6.
- **6**) Compare f(2.5) and f(3). Justify your answer.
- 7) Compare f '(0.5) and f '(3.5). Justify your answer.

أسس تصحيح مسابقة الرياضيات

Q.I	Answers	10 pts
1a	$\lim_{x \to -0^+} f(x) = +\infty \; ; \; \lim_{x \to -0^-} f(x) = -\infty$	1
1b	x = 0 is a vertical asymptote	1
2a	$\lim_{x \to +\infty} f(x) = +\infty; \lim_{x \to -\infty} f(x) = -\infty$	1
2b	$\lim_{x \to \pm \infty} (f(x) - y_d) = \lim_{x \to \pm \infty} \frac{1}{x} = 0$ Thus, (d) is an oblique asymptote to (C) at $\pm \infty$	1.5
3a	$f'(x) = \frac{(2x)(x) - (1)(x^2 + 1)}{x^2} = \frac{x^2 - 1}{x^2}$	1.5
3b	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
4	4	2

Q.II	Answers						10 pts
1	Number of students whose grades are greater or equal to 10 is $8 + 3 = 11$						1.5
	Grades	[0, 5[[5, 10[[10, 15[[15, 20[
	Center	2.5	7.5	12.5	17.5		
2	Number of students	4	5	8	3		1.5
	Mean grade = 1.5	(by calculato	r)				

