الاسم:	مسابقة في مادة الفيزياء	
الرقم:	المدة: ساعة واحدة	

This exam is formed of four obligatory exercises in two pages Non programmable calculators are allowed

Exercise 1: (4 points)

A resistor (D_1) , of resistance R_1 , is subjected to a constant voltage of adjustable value U.

Choose the correct answer. Justify.

- 1) The voltage U across the terminals of (D_1) and the current I through it are:
 - **a.** inversely proportional
- **b.** proportional
- **c.** equal
- 2) (D₁) receives during a certain time t an electrical energy of 3000 J. The thermal energy furnished by (D₁) during t is:
 - **a.** practically equal to 3000 J
- **b.** greater than 3000 J
- **c.** less than 3000 J

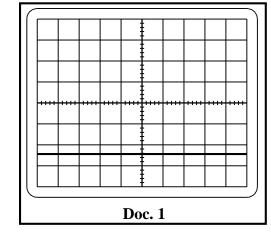
- 3) By decreasing the voltage U, the resistance R_1 :
 - a. increases

- **b.** remains the same
- **c.** decreases
- **4**) (D₁) is connected in series with another resistor (D₂) of resistance R₂ greater than R₁. The resistance R of the resistor equivalent to (D₁) and (D₂) is:
 - **a.** smaller than R₁

- **b.** greater than R₂
- \mathbf{c} . between R_1 and R_2

Exercise 2: (5 points)

Studying a voltage using an oscilloscope


Document 1 represents the waveform of a voltage U supplied by a voltage source (G).

In the absence of any voltage, the horizontal luminous line passes through the center of the screen of

the oscilloscope.

The vertical sensitivity of the oscilloscope is: $S_V = 5 \text{ V/div}$.

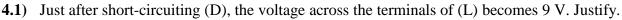
- 1) U is a DC voltage. Justify.
- 2) Name a source of voltage that may deliver such type of voltage.
- 3) Determine the value of the voltage U.
- 4) Indicate, with justification, which of the terminals P (positive) or N (negative) of (G) is connected to the ground of the oscilloscope.
- The connections of the oscilloscope across (G) are reversed.Indicate the direction of displacement of the luminous line.

Exercise 3: (5 points)

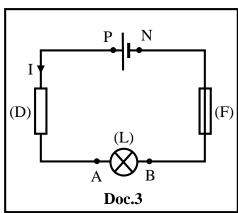
Maximum power

Document 2 represents the characteristic current-voltage curve of a resistor (D) of resistance R.

- 1) Referring to document 2:
 - **1.1**) Indicate the value of the current I through (D) when the voltage across its terminals is U = 12 V.
 - **1.2**) Deduce that $R = 80 \Omega$.
- 2) P is the electric power consumed by (D).
 - **2.1**) Give the expression of P in terms of U and I.
 - **2.2)** Show that $P = RI^2$.
- 3) Calculate the maximum power P_{max} that (D) can withstand, knowing that the maximum current that may pass through (D) is $I_{max} = 0.25$ A,



Exercise 4: (6 points)


Role of a fuse

The circuit of document 3 is formed of the following electric components:

- a battery that maintains across its terminals a constant voltage U_{PN};
- a lamp (L) carrying the indications (6 V; 100 mA);
- a convenient fuse (F) of negligible resistance;
- a resistor (D) of resistance $R = 30 \Omega$.
- 1) Give the significance of each of the indications carried by (L).
- 2) The voltage U_{BN} across (F) is null. Justify.
- 3) (L) glows normally.
 - **3.1**) The current in the circuit is I = 100 mA. Justify.
 - **3.2**) Calculate the voltage U_{PA} across the terminals of (D).
 - **3.3**) Show that $U_{PN} = 9 \text{ V}$.
- 4) The terminals P and A of (D) are connected by a connecting wire of negligible resistance.

- **4.2**) The lamp (L) may burn out. Why?
- **4.3**) In fact, (L) turns off and doesn't burn out. Explain.

مسابقة في مادة الفيزياء أسس التصحيح - إنكليزي

Exercise 1: (4 pts)

Resistor (Ohmic conductor)

Answer key	Mark
b.	0.5
According to Ohm's law $U = R \times I$.	0.5
a.	0.5
The resistor converts the electric energy totally into thermal energy.	0.5
b.	
The resistance is the ratio $\frac{0}{1}$ which is constant and independent of the values of	0.5
U and I.	0.5
Or: the resistance is a characteristic of the resistor which remains constant while U or I varies.	
b.	0.5
	0.5
	b. According to Ohm's law $U = R \times I$. a. The resistor converts the electric energy totally into thermal energy. b. The resistance is the ratio $\frac{U}{I}$ which is constant and independent of the values of U and I . Or: the resistance is a characteristic of the resistor which remains constant while U or I varies.

Exercise 2: (5 points)

Studying a voltage using an oscilloscope

Question	Answer key	Mark
1	Since the displayed waveform is a horizontal luminous line. or : The voltage remains constant with respect to time.	1
2	Dry cell, battery, accumulator,	1
3	$U = y \times Sv = -2.4 \times 5 = -12V.$	1
4	P is connected to the ground of the oscilloscope since the visualized voltage is negative.	1
5	Displaced upwards.	1

Exercise 3: (5 points)

Maximum power

Question	Answer key	Mark
1.1	I = 150 mA	0.5
1.2	$R = \frac{U}{I} = \frac{12}{0.15} = 80\Omega.$ Or any other point graphically $Or R = \frac{\Delta U}{\Delta I}$	1.5
2.1	P = UI.	0.5
2.2	$P = UI$ and $U = RI$ then $P = RI \times I = RI^2$.	1
3	$Pmax = RI_{max}^2 = 80 \times 0.25^2 = 5W$	1.5

Exercise 4: (6 points)

Role of a fuse

Question	Answer key	Mark
1	6 V : rated voltage; 100 mA : rated current.	0.5 0.5
2	$U_{BN} = 0V$ the fuse is of negligible resistance.	0.5
3.1	Because (L) glows normally, then I = 100 mA.	0.5
3.2	$U_{PA} = R \times I = 30 \times 0.1 = 3V$ (Ohm's law).	1.25
3.3	$U_{PN} = U_{PA} + U_{AB} + U_{BN} \text{ (law of addition of voltages in series) then } U_{AB} = \text{rated}$ voltage of (L) = 6V since (L) shines normally. $U_{PN} = 3 + 6 + 0 = 9V.$	1.25
4.1	$U_{PN} = U_{PA} + U'_{AB} + U_{BN}$ (law of addition of voltages in series) $9 = 0 + U'_{AB} + 0$ donc $U'_{AB} = 9V$.	0.5
4.2	(L) may burn out since the voltage across its terminals becomes greater than its rated voltage.	0.5
4.3	Since the fuse melts thus protecting the lamp.	0.5