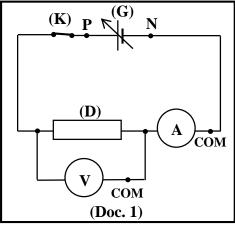
الاسم: الرقم: مسابقة في مادة الفيزياء المدة: ساعة واحدة

<u>This exam is formed of four obligatory exercises in two pages.</u> Non programmable calculators are allowed

Exercise 1: (4 points) True or False

For each of the following statements, answer by true or false and rewrite the false statements correctly.


- 1) The resistance R_{eq} of the resistor equivalent to two resistors of resistances R_1 and R_2 connected in parallel is: $R_{eq} = R_1 + R_2$.
- 2) The resistance of a resistor is measured by a voltmeter.
- 3) Joule's effect is the transformation of electric energy into heat.
- 4) The effective voltage between the live line and the neutral of the wall outlet is about 220 V.

Exercise 2: (6 points)

Energy consumed by an electric component

Consider the circuit of document 1 that consists of the following components:

- a DC generator (G) of adjustable voltage;
- an electric component (D);
- an ammeter (A);
- a voltmeter (V);
- connecting wires;
- a switch (K).

 We vary the voltage delivered by (G) from 0 to 10 V. We record the values of U and I displayed respectively by (V) and (A). The results are shown in the table below:

Γ	U (V)	0	2	4	6	10
	I (mA)	0	10	20	30	50

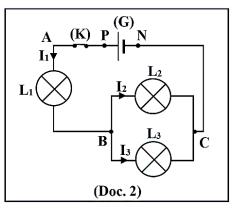
1.1) Draw the characteristic current-voltage curve of (D).

on the horizontal axis: 1 cm for 10 mA;

on the vertical axis: 1 cm for 2 V.

1.2) (D) is a resistor. Justify.

Scale:

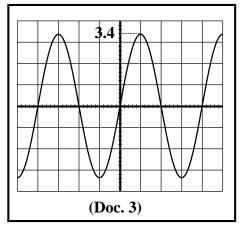

- **1.3**) Deduce its resistance R.
- 2) For a voltage, across (D), U = 8 V:
 - **2.1**) give graphically the corresponding value of I;
 - **2.2**) show that the electric power consumed by (D) is P = 0.32 W;
 - 2.3) calculate, in J, the electric energy E consumed by (D) during 10 minutes of functioning.

Exercise 3: (4 points)

Study of an electric circuit

The electric circuit of document 2 is formed of:

- a generator (G) that maintains across its terminals a constant voltage U_{PN} = 9 V;
- three lamps (L_1) , (L_2) and (L_3) ;
- a switch (K);
- connecting wires.
- 1) The switch (K) is closed. The voltage agrees (L_{i}) is $U_{i} = -$
 - The voltage across (L₁) is $U_{AB} = 3$ V. **1.1**) Knowing that $U_{PA} = 0$ V and $U_{CN} = 0$ V, determine
 - **1.1**) Knowing that $U_{PA} = 0$ V and $U_{CN} = 0$ V, determine the voltage U_{BC} .
 - **1.2**) Deduce, by indicating the law used, the voltage across the terminals of (L_2) and that across the terminals of (L_3) .
 - **1.3**) The generator sends a current $I_1 = 500$ mA. The current through (L₂) is $I_2 = 300$ mA. Determine the current I_3 through (L₃).
- The switch (K) is open. Give the new values of U_{PA} and U_{BC}.



Exercise 4: (6 points) Alternating Sinusoidal Voltage

Document 3 represents the waveform of an alternating sinusoidal voltage (u) delivered by a low frequency generator (LFG).

In the absence of any voltage, the horizontal luminous line passes through the center of the screen of the oscilloscope.

- 1) Knowing that the frequency f of (u) is 50 Hz:
 - **1.1**) show that its period T is 20 ms;
 - **1.2**) deduce the horizontal sensitivity S_h of the oscilloscope.
- The vertical sensitivity S_v of the oscilloscope is adjusted to 5 V/div.
 Referring to document 3, calculate the maximum value U_m of (u).
- 3) A voltmeter, in the AC mode, connected across this generator indicates a value U.
 - **3.1**) What does U represent?
 - **3.2**) Calculate its value.
- 4) A lamp (L) acting as a resistor and carries the inscription 12 V is connected across this generator.
 - **4.1**) Give the significance of the inscription 12 V.
 - **4.2**) (L) glows normally. Justify.

مسابقة في مادة الفيزياء أسس التصحيح - إنكليزي

Exercise 1: (4 points) True or false

Question	Answer	Mark
1	False. The resistance R_{eq} of the resistor equivalent to two resistors of resistances R_1 and R_2 connected in serie is: $R_{eq} = R_1 + R_2$. Or: The resistance R_{eq} of the resistor equivalent to two resistors of resistances R_1 and R_2 connected in parallel is: $R_{eq} = \frac{R_1 x R_2}{R_1 + R_2}$	1
2	False. The resistance of a resistor can be measured by an ohmmeter.	1
3	True.	1
4	True.	1

Exercise 2: (6 points) Energy consumed by an electric component

Question	Answer	Mark
1.1	U (V)	1
1.2	Since its characteristic curve is a straight line passing through O.	1
1.3	for I = 10 mA, U = 2 V, therefore R = $\frac{U}{I} = \frac{2V}{0.01A} = 200 \Omega$ (Ohm's law).	
2.1	I = 40mA = 0.04 A (graph)	0.5
2.2	$P = U \times I = 8 \times 0.04 = 0.32 W$	
2.3	$E = P \times t = 0.32 \times 10 \times 60 = 192 J.$	1.25

Question	Answer	Mark
1.1	$U_{BC} = U_{BA} + U_{AP} + U_{PN} + U_{NC}$ (law of addition of voltages)	1
	$U_{BC} = -3 + 0 + 9 + 0 = 6 V.$	
1.2	$U_2 = U_3 = 6 V$ (law of uniqueness of voltage in parallel).	1
1.3	$I_3 = I_1 - I_2 = 500 - 300 = 200 \text{ mA}$ (law of addition of currents)	1
2	$U_{PA} = U_{PN} = 9 \text{ V}.$	0.5
	$U_{BC} = 0V.$	0.5

Exercise 3: (4 points) Study of an electric circuit

Exercise 4: (6 points)

Alternating Sinusoidal Voltage

Question	Answer	Mark
1.1	T = 1/f = 1/50 = 0.02 s = 20 ms.	1
1.2	$S_h = T/x = 20 \text{ms} / 4 \text{ divisions} = 5 \text{ ms/div}.$	1
2	$U_{\rm m} = S_{\rm v} \times y_{\rm m} = 3.4 \times 5 = 17 {\rm V}.$	1
3.1	It's the effective voltage.	0.5
3.2	$U = U_m / \sqrt{2} = 17 / \sqrt{2} = 12.02 \text{ V}.$	1
4.1	12 V represent the rated voltage of the lamp.	0.5
4.2	This lamp functions normally since its rated voltage is (almost) equal to the effective voltage of the generator.	1
	effective voltage of the generator.	