وزارة التربية والتعليم العالي المديريّة العامة للتربية دائرة الامتحانات الرسمية

		-	-
الاسم:	مسابقة في مادة الفيزياء		
الرقم:	المدة: سَاعة واحدة		

<u>This exam is formed of four obligatory exercises in two pages.</u> <u>Non programmable calculators are allowed</u>

Exercise 1 (4 pts) Mechanical action

A solid (S) of mass m = 200 g is placed on a horizontal table as shown in document 1. (S) is in equilibrium under the action of two forces : its weight \vec{W} of magnitude W and the normal reaction of the table \vec{N} of magnitude N.

Given: g = 10 N/kg.

دورة العام ٢٠٢١ الخاصة

الاثنين ٢٦ تموز ٢٠٢١

The following statements are false. Rewrite them correctly.

- 1. \overrightarrow{W} is a contact force and \overrightarrow{N} is a force acting from a distance.
- 2. The weight of (S) has a magnitude W = 2000 N.
- 3. \vec{N} is directed vertically downwards.
- 4. (S) is in equilibrium which allows us to write: $\vec{W} = \vec{N}$.

Exercise 2 (5 pts) Electric stove

A baker buys an electric stove acting as a resistor. On its rating plate, he reads the following indications: 220 V - 2200 W.

- 1. Give the meaning of each indication written on the plate.
- 2. A resistor converts electrical energy into another form of energy. What is the form of this energy?
- 3. The electric power consumed by a resistor is equal to the product of the voltage U across its terminals, by the current I traversing it: P = U I.

Calculate the current traversing this stove in normal functioning.

4. The stove is used at the rate of two hours per day.

4.1. Determine, in kWh, the electric energy E_1 consumed by this stove in two hours.

- **4.2.** Show that the electric energy E_2 consumed by this stove during one month (30 days) is 132 kWh.
- **4.3.** Calculate the monthly cost to be paid by the baker, knowing that the average price of one kWh is 100 L.L.

Exercise 3 (5.5 pts)

Electric circuit

During a laboratory session, a circuit is constructed as shown in document 2, where:

- (G) is a generator that maintains across its terminals a constant voltage U.
- (R₁) is a resistor of resistance $R_1 = 20 \Omega$.
- (R₂) is a resistor of resistance $R_2 = 40 \Omega$.
- (A) is an ammeter of negligible resistance.

We designate by I the current sent by (G), I_1 the current traversing (R_1) and I_2 the current traversing (R_2). The ammeter indicates 100 mA.

- **1.** $I = I_1 = I_2 = 100$ mA. Justify.
- **2.** Calculate the resistance R_e of the resistor equivalent to (R_1) and (R_2) .
- 3. Calculate, by applying Ohm's law, the values of the voltages U_1 and U_2 across the terminals of (R_1) and (R_2) respectively.
- 4. The voltage across the terminals of (A) is zero. Why?
- **5.** Deduce the value of U.

Exercise 4 (5.5 pts) Calibration curve of a spring

Document 3 represents the calibration curve of an elastic spring of initial length $L_0 = 10$ cm. This curve shows, within the elastic limit of the spring, the tension of the spring T as a function of its elongation ΔL .

1. Copy and complete, referring to document 3, the following table :

T (N)	0.5		2.5
$\Delta L (cm)$		3	
$\frac{T}{\Delta L}$ (N/cm)			

- 2. Hooke's law is given by the relation: $T = k \Delta L$ where k is a physical quantity of the spring.
 - **2.1.** Give the name of k.
 - **2.2.** Deduce its value in S.I.
- 3. The maximum length reached by the spring without losing its elasticity is $L_{max} = 16$ cm.
 - **3.1.** Calculate the maximum elongation ΔL_{max} of the spring.
 - **3.2.** Indicate, graphically, the value of the corresponding tension T_{max} .
 - **3.3.** Verify by calculation the value of T_{max} .

	بالمراجع فالمعالية والمراجع و	
N1	مبيابة ام مادة الفيز بام	
الاشتقار	مسالفة في مادة الغلز باع	
•1 -		
	· · · · · · · · · · · · · · · · · · ·	
- Ä . 11		
- Li La		
• [· · · · · · · · · · · · · · · · · · ·	

Exercice 1 (4 pts) Mechanical action

Partie	Réponses	Note
1.	\overrightarrow{W} is a force acting from a distance and \overrightarrow{N} is a contact force.	1
2.	The weight of (S) has a magnitude $W = 2N$.	1
3.	\vec{N} is directed vertically upwards.	1
4.	(S) is in equilibrium which allows us to write: $\vec{W} = -\vec{N}$.	1

Exercice 2 (5 pts) Electric stove

Partie	Réponses	Note
1.	220 V is the rated voltage of the stove ;	0,5
	2200 W is the rated power.	0,5
2.	Thermal energy or heat.	0,5
3.	$I = \frac{P}{U} = \frac{2200W}{220V} = 10 \text{ A.}$	1
4.1.	The electric power consumed by the stove during the 2 hours is : $E_1 = 2.2 \text{ x } 2 = 4.4 \text{ kWh.}$	1
4.2.	The electric power consumed by the stove during 2 months: $E_2 = 4.4 \times 30 = 132$ kWh.	1
4.3.	The monthly cost is : $132 \times 100 = 13200 \text{ LL}$	0,5

Exercice 3 (5 ¹/₂ pts) Electric circuit

Partie	Réponses	Note
1.	$I = I_1 = I_2 = 100$ mA due to the law of uniqueness of current in a series circuit.	1
2.	R_1 and R_2 are connected in series thus $R_e = R_1 + R_2 = 20 + 40 = 60 \Omega$.	1
3.	By applying Ohm's law : $U_1 = R_1 \times I = 20 \times 0, 1 = 2 V.$ $U_2 = R_2 \times I = 40 \times 0, 1 = 4 V.$	0.75 0.75
4.	Since (A) has a negligible resistance.	0,5
5.	$\begin{split} U &= U_{(A)} + U_1 + U_2 \text{ (Law of addition of voltages)} \\ U &= 0 + 2 + 4 \text{ thus } U = 6V. \end{split}$	0,5 1

Exercice 4 (5 ¹ / ₂ pts)	Calibration curve of a spring
--	-------------------------------

Partie	Réponses				Note	
1.	T (N)	0.5	1.5	2.5		1,5
	$\Delta L (cm)$	1	3	5		
	$\frac{T}{\Delta L}$ (N/cm)	0.5	0.5	0.5		
2.1.	Spring constant or stiffness.				0,5	
2.2.	$k = \frac{T(N)}{\Delta L(m)} = 50 \text{ N/m.}$				1	
3.1.	$\Delta L_{max} = L_{max} - L_0 = 16 - 10 = 6 \text{ cm}.$				0,5	
3.2.	Graphically : When $\Delta L_{max} = 6$ cm, $T_{max} = 3$ N.				1	
3.3.	$T_{max} = k \times \Delta L_{max} = 50 \times 0.06 = 3 N.$				1	