. ..

This Exam Includes Three Exercises. It Is Inscribed On 10 Pages Numbered from 1 to 10. The Use Of A Non-Programmable Calculator Is Allowed.

**Answer The Three Following Exercises:** 

مسابقة في مادة الكيمياء المدة: ساعتين (باللغة الانكليزية)

| <br> | <br> | <br>الاسم: |
|------|------|------------|
|      |      |            |
|      |      |            |
| <br> | <br> | <br>الرقم: |

# **Exercice 1 (7 points)** From Butter to a Perfumed Compound

Butyrin or glyceryl tributyrate is a triglyceride found in butter.

The general formula of triglyceride is represented in **document-1**.

The aim of this exercise is to study the preparation of an organic compound used in perfumery from butter.

## 1. Structure of Butyrin

Referring to **document-1**:

1.1. Show that the formula of R is  $C_3H_7$ , knowing that the molar mass of butyrin is M = 302 g.mol<sup>-1</sup> and R is an alkyl group of formula  $C_nH_{2n+1}$ 

# Given:

Molar Masses in g.mol<sup>-1</sup>: M(C) = 12; M(H) = 1; M(O) = 16

**1.2.** Write the condensed structural formula of butyrin.

#### 2. Synthesis of an Ester (E)

Butyrin can be used to manufacture an ester (**E**), used in perfumery, according to the reactions given in **document-2**.

### **Reaction 1**:

Butyrine +  $3 (Na^+ + HO^-) \rightarrow 3 (C_3H_7 - COO^- + Na^+) + (G)$  (saponification reaction)

## **Reaction 2**:

$$C_3H_7 - COO^- + H_3O^+ \longrightarrow C_3H_7 - COOH + H_2O$$

#### **Reaction 3**:

$$C_3H_7 - COOH + propan-2-ol \rightleftharpoons (E) + H_2O$$
 (Esterification reaction)

- **2.1.** Referring to **document-2**, **specify** whether each of the following propositions is <u>true</u> or <u>false</u>.
  - **2.1.1.** Knowing that the condensed structural formula of compound (G) obtained by **reaction 1** is :

The systematic name of the compound (G) is glycerol.

- **2.1.2.** The ion  $C_3H_7 COO^-$ is amphiphilic.
- **2.1.3.** The sodium butanoate solution  $(C_3H_7 COO^- + Na^+)$  is neutral.
- **2.1.4.** The **reaction 2:**  $C_3H_7 COO^- + H_3O^+ \longrightarrow C_3H_7 COOH + H_2O$  is an acid-base reaction.
- 2.2. Write, using condensed structural formulas, the equation of the reaction 3: C<sub>3</sub>H<sub>7</sub> COOH + 2-propanol 

  (E) + H<sub>2</sub>O (Esterification)
  - Give the systematic name of the ester (E).
- **2.3. Show that** the molecule of compound (**E**) is achiral molecule.

# 3. Study of the Reaction 3

Starting from an equimolar mixture of  $C_3H_7$  – **COOH** and **2-propanol**, the yield of the esterification reaction (**reaction 3**) is **60** %.

- **3.1. Propose** a way to increase the yield of this reaction starting from the same reactants.
- **3.2.** This reaction becomes complete when the reactant  $C_3H_7 COOH$  is replaced by its chlorinated derivative:
  - **Give** the systematic name of this chlorinated derivative.
  - Write, using condensed structural formulas, the equation of the reaction of the preparation of the ester (E).

#### **Exercice 2 (6 points)** Kinetics of the Hydrolysis of t-Butyl Chloride

2-chloro-2-methylpropane, commonly known as t-butyl chloride, is a colorless organic compound belonging to the series of halogenoalkanes.

When **tert-butyl chloride is dissolved** in water-acetone mixture, it **reacts with** water to form tert- butyl alcohol and hydrochloric acid in a slow and complete reaction that took place according to the equation shown below:



2-chloro-2-methylpropane + water  $\rightarrow$  tert- butyl alcohol + hydrochloric acid

The aim of this exercise is to study the kinetic of this reaction.

### 1. Preliminary Study

- **1.1. Give** the systematic name of tert-butyl alcohol.
- **1.2. Show that** its class is <u>tertiary</u>.
- **1.3. What is observed** when an excess of an orange acidified potassium dichromate solution is poured into a test tube containing tert-butyl alcohol? **Justify**.

### 2. Kinetic Study

At the instant of time  $\mathbf{t} = \mathbf{0}$ , a volume  $\mathbf{V} = \mathbf{1.0}$  mL of t-butyl chloride is introduced into a flask containing water-acetone mixture, maintained at constant temperature  $\mathbf{T}$ . The final volume of the reacting mixture is  $\mathbf{V}_1 = \mathbf{100.0}$  mL. (Water is in large excess). Using an appropriate method, the concentrations of hydronium ions are determined at different instants and the concentrations of tert-butyl chloride (noted  $[\mathbf{RCl}]$ ) are deduced at these instants.

The results are grouped in the table of **document-1**.

| t (min) [RCl](10-2mol.L-1) | 9.2 | 6.6 | 5.2 | 45 | 3.2 | 2.5 | 90 |
|----------------------------|-----|-----|-----|----|-----|-----|----|
| Document-1                 |     |     |     |    |     |     |    |

#### Given:

- Molar mass of tert-butyl chloride:  $M = 92.5 \text{ g.mol}^{-1}$
- Density of tert-butyl chloride: d= 0.85 g.mL<sup>-1</sup>
- **2.1. Verify that** the initial concentration of tert-butyl chloride is:

[RC
$$\ell$$
]<sub>o</sub> = 9.2×10<sup>-2</sup> mol.L<sup>-1</sup>.

**2.2. Show that** the concentration of hydronium ions,  $[\mathbf{H_3O^+}]_t$ , formed at the instant of time t and the concentration of tert-butyl chloride,  $[\mathbf{RCl}]_t$ , at the same instant t are related according to the following relation:

$$[H_3O^+]_t = 9.2 \times 10^{-2} - [RCl]_t$$

**2.3.** Plot the curve representing the change of the concentration of tert-butyl chloride as a function of time:  $[\mathbf{RC}'] = \mathbf{f}(\mathbf{t})$ , in the interval of time:

$$[0 - 90 \text{ min}].$$

Take the following scales:

In abscissa: 1 cm for 15 min

In ordinate: 1 cm for 1.0×10<sup>-2</sup> mol.L<sup>-1</sup>

- **2.4.** For each of the two following propositions, **indicate** the correct and the false one. **Correct** the false proposition:
  - **2.4.1.** The half-life time of this reaction is  $t^{1/2} = 38$  min.
  - **2.4.2.** As the concentration of the tert-butyl alcohol increases with time, the rate of its formation increases.
- **2.5.** The same experiment is repeated but with only one modification: the reacting mixture is maintained at a temperature T' > T.

Trace on the same graph of the part 2.3, the shape of the curve

 $[RC\ell] = g(t)$  in the interval of time: [0 - 90 min].

### **Exercice 3 (7 points)** Acid-Base Reactions

The labels of three available flasks show the indications given in **document -1.** 

| Flask (1)                                | Flask (2)                             | Flask (3)                                   |  |  |  |
|------------------------------------------|---------------------------------------|---------------------------------------------|--|--|--|
| Benzoic acid crystals                    | - Ethylamine aqueous solution         | Hydrochloric acid solution                  |  |  |  |
| $M(C_6H_5COOH) = 122 \text{ g.mol}^{-1}$ | - percentage by mass = 33%            | $(H_3O^++C\ell^-)$                          |  |  |  |
|                                          | - Density = $0.914 \text{ g.mL}^{-1}$ | $C_a = 5 \times 10^{-2} \text{ mol.L}^{-1}$ |  |  |  |
|                                          | - $M(C_2H_5NH_2) = 45g.mol^{-1}$      |                                             |  |  |  |
| Document -1                              |                                       |                                             |  |  |  |

#### **Given:**

The study is carried out at 25°C.

Ethylamine is a weak base.

pKa of Acid/Base pairs:

pKa  $(C_6H_5COOH/C_6H_5COO^-) = 4.2$ 

pKa  $(C_2H_5NH_3^+/C_2H_5NH_2)=10.8$ 

 $pKa(H_2O/HO^-) = 14$ 

The aim of this exercise is to prepare acidic and basic solutions of same concentration  $\mathbf{C}$  and to study some acid – base reactions.

# 1. Preparation of Benzoic Acid Solution (S1)

- A mass **m** of benzoic acid crystals is introduced into a volumetric flask of **250 mL**.
- Enough distilled water is added to dissolve the solid
- Distilled water is added to reach the line mark.
- A solution (S<sub>1</sub>) of benzoic acid of concentration  $C = 2 \times 10^{-2}$  mol.L<sup>-1</sup> is obtained.

### **1.1.** Calculate the mass m.

1.2. Write the equation of the reaction of benzoic acid C<sub>6</sub>H<sub>5</sub>COOH with <u>water</u>.

# 2. Preparation of an Aqueous Ethylamine Solution (S<sub>2</sub>)

It is required to prepare 1.0 L of an ethylamine solution (S2) of concentration  $C = 2 \times 10^{-2} \text{ mol.L}^{-1}$  starting from the solution of the flask (2).

- **2.1. Calculate** the molar concentration of the ethylamine solution contained in flask (2)
  - **Show that** the volume that should be withdrawn from the flask (2) to realize this preparation is V=3 mL.
- **2.2. Choose,** from the sets of **document-2**, the most convenient one to realize the above preparation.

| Set 1                   | Set 2                   | Set 3                    |
|-------------------------|-------------------------|--------------------------|
| Volumetric pipet 5 mL   | Graduated pipet 5 mL    | Graduated cylinder 5mL   |
| Volumetric flask 1000mL | Volumetric flask 1000mL | Erlenmeyer flask 1000 mL |
| Beaker 50 mL            | Beaker 50 mL            | Beaker 50 mL             |

#### **Document-2**

**2.3.** Verify that the pH of the solution  $(S_2)$  is between 7 and 12.3:

### 3. pH-metric Study

A hydrochloric acid solution  $H_3O^++C\ell^-$  of concentration  $C_a=5\times 10^{-2}\, mol.L^{-1}$  is added progressively into a beaker containing a volume  $Vb=20.0\, mL$  of the ethylamine solution (S<sub>2</sub>)  $C_2H_5NH_2$  of concentration C.

The equation of the complete reaction that took place is:

$$C_2H_5NH_2 + H_3O^+ \rightarrow C_2H_5NH_3^+ + H_2O$$

- **3.1. Justify** the following statements:
  - **3.1.1.** The volume of the acid solution added to reach the equivalence point is **8 mL**.
  - **3.1.2.** The pH at equivalence, based on the chemical species present at equivalence, is  $\mathbf{pH}_{E} < 7$
  - 3.1.3. The coordinates of the half equivalence point are (Va = 4 mL; pH = 10.8).

#### 4. Acid-Base Mixture

A volume a volume  $V_1 = 72$  mL of the benzoic acid solution  $C_6H_5COOH$  ( $S_1$ ) is mixed with a volume  $V_2 = 28$  mL of the above ethylamine solution  $C_2H_5NH_2$  ( $S_2$ )

**4.1. Complete** the equation of the reaction that occurs:

$$C_6H_5COOH + C_2H_5NH_2 \rightarrow ----- + -----$$

- **4.2. Verify that** the value of the ratio  $\frac{[C_6H_5COO^-]}{[C_6H_5COOH]}$  in the obtained solution is **0.63** knowing that the ethylamine is the limiting reacting.
- **4.3.** Given the three following values of pH:

**a.** 
$$pH < 3.2$$
 ;

**b.** 
$$pH = 4$$
;

**c.** 
$$pH > 5.2$$

Referring to the answer in part 4.2, **deduce** the **pH** that corresponds to the obtained solution. **Justify** without calculation.