This Exam Includes Three Exercises. It Is Inscribed On 10 Pages Numbered from 1 to 10. The Use Of A Non-Programmable Calculator Is Allowed.

Answer The Three Following Exercises:

المدة: ساعتين

(باللغة الانكلزيةة)

الرقم:

Butyrin or glyceryl tributyrate is a triglyceride found in butter.
The general formula of triglyceride is represented in document-1.

$\mathrm{R}-\mathrm{COO}-\mathrm{CH}_{2}$
l
$\mathrm{R}-\mathrm{COO}-\mathrm{CH}$
l
$\mathrm{R}-\mathrm{COO}-\mathrm{CH}_{2}$
Document-1

The aim of this exercise is to study the preparation of an organic compound used in perfumery from butter.

1. Structure of Butyrin

Referring to document-1:
1.1. Show that the formula of \mathbf{R} is $\mathbf{C}_{3} \mathbf{H}_{7}$, knowing that the molar mass of butyrin is $\mathbf{M}=\mathbf{3 0 2} \mathbf{~ g . m o l}{ }^{-1}$ and \mathbf{R} is an alkyl group of formula $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{\mathbf{2 n + 1}}$

Given:

Molar Masses in g. $\mathrm{mol}^{-1}: \mathbf{M}(\mathbf{C})=\mathbf{1 2} ; \quad \mathbf{M}(\mathbf{H})=\mathbf{1} \quad ; \quad \mathbf{M}(\mathbf{O})=\mathbf{1 6}$
1.2. Write the condensed structural formula of butyrin.

2. Synthesis of an Ester (E)

Butyrin can be used to manufacture an ester (E), used in perfumery, according to the reactions given in document-2.

Reaction 1:

Butyrine $+3\left(\mathrm{Na}^{+}+\mathrm{HO}^{-}\right) \longrightarrow 3\left(\mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{COO}^{-}+\mathrm{Na}^{+}\right)+(\mathbf{G})$ (saponification reaction)
Reaction 2 :
$\mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$

Reaction 3 :

$\mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{COOH}+$ propan-2-ol $\rightleftarrows(\mathrm{E})+\mathrm{H}_{2} \mathrm{O}$
(Esterification reaction)
2.1. Referring to document-2, specify whether each of the following propositions is true or false.
2.1.1. Knowing that the condensed structural formula of compound (G) obtained by reaction 1 is :

The systematic name of the compound (G) is glycerol.
2.1.2. The ion $\mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{COO}^{-}$is amphiphilic.
2.1.3. The sodium butanoate solution $\left(\mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{COO}^{-}+\mathrm{Na}^{+}\right)$is neutral.
2.1.4. The reaction 2: $\mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$ is an acid-base reaction.
2.2. - Write, using condensed structural formulas, the equation of the reaction 3: $\mathrm{C}_{3} \mathrm{H}_{7}-\mathbf{C O O H}+2$-propanol $\rightleftarrows(\mathrm{E})+\mathrm{H}_{2} \mathrm{O}$ (Esterification)

- Give the systematic name of the ester (E).
2.3. Show that the molecule of compound (E) is achiral molecule.

3. Study of the Reaction 3

Starting from an equimolar mixture of $\mathbf{C}_{3} \mathbf{H}_{7}-\mathbf{C O O H}$ and 2-propanol, the yield of the esterification reaction (reaction 3) is $\mathbf{6 0 \%}$.
3.1. Propose a way to increase the yield of this reaction starting from the same reactants.
3.2. This reaction becomes complete when the reactant $\mathbf{C}_{3} \mathbf{H}_{7}-\mathbf{C O O H}$ is replaced by its chlorinated derivative:

- Give the systematic name of this chlorinated derivative.
- Write, using condensed structural formulas, the equation of the reaction of the preparation of the ester (\mathbf{E}).

Exercice 2 (6 points) Kinetics of the Hydrolysis of t-Butyl Chloride

2-chloro-2-methylpropane, commonly known as t-butyl chloride, is a colorless organic compound belonging to the series of halogenoalkanes.

When tert-butyl chloride is dissolved in water-acetone mixture, it reacts with water to form tert- butyl alcohol and hydrochloric acid in a slow and complete reaction that took place according to the equation shown below:

The aim of this exercise is to study the kinetic of this reaction.

1. Preliminary Study

1.1. Give the systematic name of tert-butyl alcohol.
1.2. Show that its class is tertiary.
1.3. What is observed when an excess of an orange acidified potassium dichromate solution is poured into a test tube containing tert-butyl alcohol? Justify.

2. Kinetic Study

At the instant of time $\mathbf{t}=\mathbf{0}$, a volume $\mathbf{V}=\mathbf{1 . 0} \mathbf{~ m L}$ of t -butyl chloride is introduced into a flask containing water-acetone mixture, maintained at constant temperature \mathbf{T}. The final volume of the reacting mixture is $\mathbf{V}_{\mathbf{1}}=\mathbf{1 0 0 . 0} \mathbf{~ m L}$. (Water is in large excess). Using an appropriate method, the concentrations of hydronium ions are determined at different instants and the concentrations of tert-butyl chloride (noted $[\mathbf{R C l}]$) are deduced at these instants.

The results are grouped in the table of document-1.

\mathbf{t} (min)	0	15	30	45	60	75	90
$[\mathbf{R C} \boldsymbol{\ell}]\left(\mathbf{1 0} \mathbf{-}^{\mathbf{2}} \mathbf{m o l} \mathbf{L}^{\mathbf{- 1}}\right)$	9.2	6.6	5.2	4.1	3.2	2.5	2.1

Document-1

Given:

- Molar mass of tert-butyl chloride: $\mathbf{M}=\mathbf{9 2 . 5} \mathbf{~ g . \mathbf { m o l } ^ { - 1 }}$
- Density of tert-butyl chloride: $\mathbf{d}=\mathbf{0 . 8 5} \mathbf{~ g} \cdot \mathbf{m L}^{\mathbf{1}}$
2.1. Verify that the initial concentration of tert-butyl chloride is:

$$
[\mathrm{RCl}]_{0}=9.2 \times 10^{-2} \mathrm{~mol} . \mathrm{L}^{-1}
$$

2.2. Show that the concentration of hydronium ions, $\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]_{\mathbf{t}}$, formed at the instant of time \mathbf{t} and the concentration of tert-butyl chloride, $[\mathbf{R C l}] \mathbf{t}$, at the same instant \mathbf{t} are related according to the following relation:

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{t}}=9.2 \times 10^{-2}-[\mathrm{RCl}]_{\mathrm{t}}
$$

2.3. Plot the curve representing the change of the concentration of tert-butyl chloride as a function of time: $[\mathbf{R C l}]=\mathbf{f}(\mathbf{t})$, in the interval of time:
[0-90 min].
Take the following scales:

In abscissa: 1 cm for 15 min

In ordinate: $\mathbf{1} \mathbf{~ c m}$ for $1.0 \times 10^{-2} \mathbf{m o l} \mathrm{~L}^{-1}$
2.4. For each of the two following propositions, indicate the correct and the false one. Correct the false proposition:
2.4.1. The half-life time of this reaction is $\mathbf{t} 1 / 2=\mathbf{3 8} \mathbf{~ m i n}$.
2.4.2. As the concentration of the tert-butyl alcohol increases with time, the rate of its formation increases.
2.5. The same experiment is repeated but with only one modification: the reacting mixture is maintained at a temperature $\mathbf{T}^{\prime}>\mathbf{T}$.

Trace on the same graph of the part 2.3, the shape of the curve $[\mathbf{R C l}]=\mathbf{g}(\mathbf{t})$ in the interval of time: [0-90 min].

Exercice 3 (7 points) Acid-Base Reactions

The labels of three available flasks show the indications given in document $\mathbf{- 1}$.

Flask (1)	Flask (2)	Flask (3)
Benzoic acid crystals $\mathrm{M}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)=122 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$	- Ethylamine aqueous solution - percentage by mass $=33 \%$ - Density $=0.914 \mathrm{~g} \cdot \mathrm{~mL}^{-1}$ - $\mathrm{M}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right)=45 \mathrm{~g} . \mathrm{mol}^{-1}$	Hydrochloric acid solution $\begin{aligned} & \left(\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}\right) \\ & \mathrm{C}_{\mathrm{a}}=5 \times 10^{-2} \mathrm{~mol} . \mathrm{L}^{-1} \end{aligned}$
Document -1		

Given:

The study is carried out at $25^{\circ} \mathrm{C}$.
Ethylamine is a weak base.
pKa of Acid/Base pairs:
$\mathrm{pKa}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right)=4.2$
$\mathrm{pKa}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right)=10.8$
$\mathrm{pKa}\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{HO}^{-}\right)=14$
The aim of this exercise is to prepare acidic and basic solutions of same concentration \mathbf{C} and to study some acid - base reactions.

1. Preparation of Benzoic Acid Solution (\mathbf{S}_{1})

- A mass \mathbf{m} of benzoic acid crystals is introduced into a volumetric flask of $\mathbf{2 5 0} \mathbf{~ m L}$.
- Enough distilled water is added to dissolve the solid
- Distilled water is added to reach the line mark.
- A solution $\left(\mathbf{S}_{\mathbf{1}}\right)$ of benzoic acid of concentration $\mathbf{C}=\mathbf{2 \times 1 0} \mathbf{1 0}^{-\mathbf{2}} \mathbf{~ m o l} \cdot \mathbf{L}^{\mathbf{- 1}}$ is obtained.

1.1. Calculate the mass m.

1.2. Write the equation of the reaction of benzoic acid $\mathbf{C}_{\mathbf{6}} \mathbf{H}_{5} \mathbf{C O O H}$ with water.

2. Preparation of an Aqueous Ethylamine Solution ($\mathbf{S}_{\mathbf{2}}$)

It is required to prepare 1.0 L of an ethylamine solution $(\mathbf{S 2})$ of concentration $\mathbf{C}=\mathbf{2 \times 1 0 ^ { - 2 }} \mathbf{~ m o l} . L^{-1}$ starting from the solution of the flask (2).
2.1. - Calculate the molar concentration of the ethylamine solution contained in flask (2)

- Show that the volume that should be withdrawn from the flask (2) to realize this preparation is $\mathbf{V}=\mathbf{3} \mathbf{m L}$.
2.2. Choose, from the sets of document-2, the most convenient one to realize the above preparation.

Set 1		
Set 2	Set 3	
Volumetric pipet 5 mL	Graduated pipet 5 mL	Graduated cylinder 5 mL
Volumetric flask 1000 mL	Volumetric flask 1000mL	Erlenmeyer flask 1000 mL
Beaker 50 mL	Beaker 50 mL	Beaker 50 mL
Document-2		

2.3. Verify that the pH of the solution $\left(\mathbf{S}_{\mathbf{2}}\right)$ is between 7 and $\mathbf{1 2 . 3}$:

$$
7<\mathrm{pH}<12.3
$$

3. pH-metric Study

A hydrochloric acid solution $\mathbf{H}_{\mathbf{3}} \mathbf{O}^{+}+\mathbf{C} \boldsymbol{\ell}^{-}$of concentration $\mathbf{C}_{\mathbf{a}}=\mathbf{5} \times \mathbf{1 0}^{-\mathbf{2}} \mathbf{m o l} \mathrm{L}^{-1}$ is added progressively into a beaker containing a volume $\mathbf{V b}=\mathbf{2 0 . 0} \mathbf{~ m L}$ of the ethylamine solution $\left(\mathbf{S}_{2}\right) \mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{5}} \mathbf{N H}_{\mathbf{2}}$ of concentration \mathbf{C}.

The equation of the complete reaction that took place is:

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

3.1. Justify the following statements:
3.1.1. The volume of the acid solution added to reach the equivalence point is $\mathbf{8} \mathbf{~ m L}$.
3.1.2. The pH at equivalence, based on the chemical species present at equivalence, is $\mathbf{p H}_{\mathbf{E}}<7$
3.1.3. The coordinates of the half equivalence point are $(\mathbf{V a}=\mathbf{4} \mathbf{m L} ; \mathbf{p H}=\mathbf{1 0 . 8})$.

4. Acid-Base Mixture

A volume a volume $\mathrm{V}_{\mathbf{1}}=\mathbf{7 2} \mathbf{m L}$ of the benzoic acid solution $\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{5}} \mathbf{C O O H}\left(\mathbf{S}_{\mathbf{1}}\right)$ is mixed with a volume $\mathbf{V}_{\mathbf{2}}=\mathbf{2 8} \mathbf{~ m L}$ of the above ethylamine solution $\mathbf{C}_{2} \mathbf{H}_{\mathbf{5}} \mathbf{N H}_{\mathbf{2}}\left(\mathbf{S}_{2}\right)$
4.1. Complete the equation of the reaction that occurs:

4.2. Verify that the value of the ratio $\frac{\left[\mathrm{C}_{6} \mathbf{H}_{5} \mathrm{COO}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathbf{C O O H}\right]}$ in the obtained solution is 0.63 knowing that the ethylamine is the limiting reacting.
4.3. Given the three following values of pH :
a. $\mathrm{pH}<3.2$;
b. $\mathrm{pH}=4$;
c. $\mathrm{pH}>5.2$

Referring to the answer in part 4.2, deduce the $\mathbf{p H}$ that corresponds to the obtained solution. Justify without calculation.

