This exam is formed of four obligatory exercises in six pages
Non programmable calculators are allowed

مسابقة في مادة الفيزياء المدة: ساعة واحدة
 (باللغة الانكليزيّة)

الاسم:

الّرقْم:

Exercise 1 (3 points)

Mercury barometer
Consider the mercury barometer shown in the document 1 .

Given:

- The atmospheric pressure

$$
\mathrm{P}_{\mathrm{atm}}=102000 \mathrm{~Pa} .
$$

We denote by:

- ρ : the density of mercury;
- g : the gravitational field strength.

(Doc. 1)

Copy and complete the statements below:

1) The pressure P_{C} at C is Pa.
2) The pressure P_{A} at A is \qquad Pa.
3) The pressure exerted by the column of mercury at B is given by the relation $P_{B}=\ldots \times \ldots \times \ldots$.
4) The pressures at A and B are equal because A and B belong to the same liquid at rest, and are at the same \qquad
5) The pressure at B is than that at D.

Exercise 2 (6 points) The slide projector

The slide projector is an apparatus used to give for an object a magnified image collected on a screen.

The document 2 shows:

- a converging lens (L), its optical axis $x^{\prime} x$, its image focus F^{\prime} and its object focus F;
- the image ($A^{\prime} \mathrm{B}^{\prime}$) of an object (AB) given by (L) and collected on the screen (E);
- Two emergent rays IB' and OB' corresponding to two incident rays issued from B.

(Doc. 2)

1) Redraw the document 2 with the same scale.
2) Show that the focal length f of (L) is $\mathbf{4} \mathbf{~ c m}$.
3) Indicate whether ($\left.A^{\prime} \mathrm{B}^{\prime}\right)$ is real or virtual. Justify.
4) Determine in $\mathbf{c m}$ the size $A^{\prime} \mathrm{B}^{\prime}$ of ($\left.\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)$.
5) Draw the incident rays corresponding to the emergent rays $I B^{\prime}$ and $O B$ '.
6) Construct the object (AB).
7) (L) acts as a slide projector. Why?

Exercise 3 (6 points) Rheostat in an electric circuit

The electric circuit of the document 3 consists of:

- a generator (G) of constant voltage $\mathrm{U}_{\mathrm{PN}}=24 \mathrm{~V}$;
- a rheostat $\left(\mathrm{R}_{\mathrm{h}}\right)$ of variable resistance;
- a lamp (L) acting as a resistor and carrying the indications ($12 \mathrm{~V} ; 6 \mathrm{~W}$);
- a voltmeter (V) connected across the terminals of (L).

1) The resistance of the rheostat is adjusted such that the lamp functions normally.
1.1) What does the indication $(12 \mathrm{~V})$ carried by (L) represent? What does the indication (6 W) carried by (L) represent?
1.2) Show, by applying the relation $P=U \times I$, that the electric current flowing in (L) is $\mathrm{I}_{1}=0.5 \mathrm{~A}$.
1.3) Show, by applying the law of addition of voltages, that the voltage $U_{A B}$ across the terminals of the rheostat is 12 V .
1.4) Show, by applying Ohm's law $U=R \times I$, that the resistance of the rheostat is $\mathrm{R}_{1}=24 \Omega$.
2) The resistance of the rheostat is now adjusted at $\mathbf{R}_{2}=0 \Omega$.
2.1) The voltmeter reads 24 V. Justify.
2.2) The lamp burns out. Explain.

Exercise 4 (5 points)

 Magnetic forceAn iron ball (B), of mass m and of center of gravity G, is suspended to the free extremity of a spring balance which indicates 3 N as shown in the document 4 .

(Doc. 4)

1) (B) is at equilibrium under the action of two forces.
1.1) Give the name of each force.
1.2) Indicate, for each force, whether it is a contact force or force acting from a distance.
1.3) Write the vector relation between these two forces.
1.4) Show that the mass m of (B) is $m=0.3 \mathrm{~kg}$. Take $g=10 \mathrm{~N} / \mathrm{kg}$.
2) A bar magnet is placed below (B) as shown in document 5 . The indication of the spring balance increases due to the magnetic force \vec{F} exerted by the magnet on (B).

(Doc. 5)
2.1) Indicate the line of action and the direction of $\overrightarrow{\mathrm{F}}$.
2.2) The magnitude F of \vec{F} is $1 N$. Represent \vec{F} at G using the scale: $1 \mathrm{~cm} \rightarrow 0.5 \mathrm{~N}$.
