مسابقة في مادة الفيزياء

الاسم: الرقم:

المدة: ساعة واحدة الرقم: This exam is formed of four obligatory exercises in two pages Non programmable calculators are allowed

Exercise 1 (3 points) Mercury barometer

Consider the mercury barometer shown in the document 1. The atmospheric pressure is 102000 Pa.

We denote by $\boldsymbol{\rho}$ the density of mercury and by g the gravitational field strength.

Copy and complete the statements below:

- 1) The pressure P_C at C is Pa.
- 2) The pressure P_A at A is Pa.
- 3) The pressure exerted by the column of mercury at B is given by the relation $P_B = \dots \times \dots \times \dots$.
- 4) The pressures at A and B are equal because A and B belong to the same liquid at rest, and are at the same
- 5) The pressure at B is than that at D.

Exercise 2 (6 points)

The slide projector

The slide projector is an apparatus used to give for an object a magnified image collected on a screen. The document 2 shows:

- a converging lens (L), its optical axis x'x, its image focus F' and its object focus F;
- the image (A'B') of an object (AB) given by (L) and collected on the screen (E);
- two emergent rays IB' and OB' corresponding to two incident rays issued from B.

(**Doc. 2**)

- 1) Redraw the document 2 with the same scale.
- 2) Determine the focal length f of (L).
- **3**) Specify the nature of (A'B').
- 4) Determine the size A'B' of (A'B').
- 5) Draw the incident rays corresponding to the emergent rays IB' and OB'.
- 6) Construct the object (AB).
- 7) (L) acts as a slide projector. Why?

(Doc. 1)

Exercise 3 (6 points)

Rheostat in an electric circuit

The electric circuit of the document 3 consists of:

- a generator (G) of constant voltage $U_{PN} = 24 V$;
- a rheostat (R_h) of variable resistance;
- a lamp (L) acting as a resistor and carrying the indications (12 V; 6 W);
- a voltmeter (V) connected across the terminals of (L).
- 1) The resistance of the rheostat is adjusted such that the lamp functions normally.
 - 1.1) What does each of the indications carried by (L) represent?
 - **1.2**) Show that the electric current flowing in (L) is $I_1 = 0.5$ A.
 - **1.3**) Determine, by applying the law of addition of voltages, the voltage U_{AB} across the terminals of the rheostat.
 - **1.4**) Show that the resistance of the rheostat is $R_1 = 24 \Omega$.
- 2) The resistance of the rheostat is now adjusted at $R_2 = 0 \Omega$.
 - 2.1) The voltmeter reads 24 V. Justify.
 - **2.2**) The lamp burns out. Explain.

Exercise 4 (5 points) Magnetic force

- (B) is at equilibrium under the action of two forces.
 1.1) Give the name of each force.
 - **1.2**) Indicate, for each force, whether it is a contact force or force acting from a distance.
 - **1.3**) Write the vector relation between these two forces.
 - **1.4**) Determine the mass m of (B). Take g = 10 N/kg.
- 2) A bar magnet is placed below (B) as shown in document 5. The indication of the spring balance increases due to the magnetic force \vec{F} exerted by the magnet on (B).

2.1) Indicate the line of action and the direction of \vec{F} .

2.2) The magnitude F of \vec{F} is 1 N. Represent \vec{F} at G using the scale: 1 cm $\rightarrow 0.5$ N.

مادة الفيزياء

Part of the Q 1.	Answer	Mark 3pts
1	The pressure P_C at C is $\underline{0}$ Pa	0.5
2	The pressure P_A at A is 102000 Pa.	0.5
3	The pressure exerted by the column of mercury is at B is given by the	0.5
	relation $\underline{\mathbf{P}}_{\underline{\mathbf{B}}} = \boldsymbol{\rho} \times \mathbf{g} \times \mathbf{H}$	
4	The pressures at A and B are equal because A and B belong to the same liquid at rest, and are at the same horizontal level .	0.5 + 0.5
4	the pressure at B is smaller than that at D	0.5

Part of the Q 2.	Answer	Mark 6pts
1	See figure	1
2	$f = OF' = 2 \times 2 = 4 \text{ cm}$	1
3	The nature of the image is real since it appears on the screen	1
4	The size of $A'B' = 3 \times 2 = 6 \text{ cm}$	0.5
5	See figure	1
6	The point of intersection of the incident rays is the object B. The foot of the perpendicular issued from B on the optical axis the object A.	1
7	Since it gives real and magnified image.	0.5

Part of the Q 3.	Answer	Mark 6pts
1.1	12 V is the rated voltage	0.5
	6 W is the rated power	0.5
1.2	$I = \frac{P}{U} = \frac{6}{12} = 0.5 \text{ A}.$	1
1.3	$U_{AB} = U_{PN} - U_L = 24 - 12 = 12 V$	1
1.4	$R_1 = \frac{U_{AB}}{1} = \frac{12}{0.5} = 24 \Omega$	1
2.1	$U_{AB} = 0 V \text{ when } R_2 = 0 \Omega (U_{AB} = R_2 \times I_2 = 0 V)$	1
	then $U_{BC} = U_{PN} - U_{AB} = 24 - 0 = 24$ V.	
2.2	since $U_{BC} = 24 \text{ V} > U_{rated} = 12 \text{ V}$	1

Part of the Q 4.	Answer	Mark 5pts
1.1	The Tension \vec{T} of the spring balance.	0.5
	The weight \overrightarrow{W} of the ball.	0.5
1.2	\vec{T} : contact force.	0.25
	\overrightarrow{W} : force acting from a distance.	0.25
1.3	$\vec{T} + \vec{W} = \vec{0} \text{ or } \vec{T} = -\vec{W}$	0.5
1.4	$T = W = m \times g = 3 N$	1
	$m = \frac{W}{g} = \frac{3}{10} = 0.3 \text{ kg}$	
2.1	Line of action of \vec{F} : vertrical	0.5
	Direction of \vec{F} : downward	0.5
2.2	$ \begin{cases} 1 \text{ cm} \rightarrow 0.5 \text{ N} \\ X \rightarrow 1 \text{ N} \end{cases} \Rightarrow X = 2 \text{ cm} $	0.5
		0.5
	See figure	