		تكانات الرسمية
الأسم:	مسابقة في مادة الفيزياء	
الرقم:	المدة: سَباعة واحدة	

This exam is formed of four obligatory exercises in two pages Non programmable calculators are allowed

Exercise 1 (3 points) Mercury barometer

Consider a mercury barometer which consists of a long tube full of mercury that is turned upside down in a recipient containing mercury. The mercury in the tube falls to a height H above the free surface of mercury. Point C is found on the surface of mercury in the tube. Above C there is vacuum. Point A is found on the free surface of mercury in the recipient (in contact with the atmosphere). Point B is found in the tube at the same horizontal level of A. Point D is found at the bottom of the recipient.

The atmospheric pressure is 102000 Pa.

We denote by ρ the density of mercury and by g the gravitational field strength.

Copy and complete the statements below:

- 1) The pressure P_C at C is Pa.
- 2) The pressure P_A at A is Pa.
- 3) The pressure exerted by the column of mercury at B is given by the relation $P_B = \dots \times \dots \times \dots \times \dots$
- 4) The pressures at A and B are equal because A and B belong to the same liquid at rest, and are at the same
- 5) The pressure at B is than that at D.

Exercise 2 (6 points) Electric water-heater

An electric water heater that can be considered as a resistor of resistance $R = 45.2 \Omega$, is fed by the voltage u of the mains. The voltage of the mains is represented by a waveform which consists of a sine wave of amplitude 4 divisions and of horizontal distance 5 divisions between two consecutive crests.

Take: the vertical scale is $S_v=77 \text{ V/div}$;

the horizontal scale is $S_h=4 \text{ ms/div}$;

$$\sqrt{2} = 1.4.$$

1. Study of the voltage u

- **1.1.**Indicate the type of the voltage u.
- **1.2.** Determine the maximum value U_m of u.
- Show that its effective value U is 220 V.
- **1.3.**Determine the period T of u. Show that its frequency is f=50 Hz.

2. Monthly consumption of the water heater

The water heater functions for **5 hours**.

- **2.1.**Determine, in W then in kW, the electric power consumed by the water heater by applying the relation $P = \frac{U^2}{R}$. (1 kW = 1000 W)
- **2.2.**Calculate, in kWh, the electric energy consumed by the water heater.

Exercise 3 (6 points)

Rheostat in an electric circuit

An electric circuit consists of:

- a generator (G) of constant voltage $U_{PN} = 24 \text{ V}$;
- a rheostat (R_h) of variable resistance;
- a lamp (L) acting as a resistor and carrying the indications (12 V; 6 W);

(These components are connected in series)

- a voltmeter (V) connected across the terminals of (L).
- 1) The resistance of the rheostat is adjusted such that the lamp functions normally.
 - 1.1) What does the indication (12 V) carried by (L) represent?
 - What does the indication (6 W) carried by (L) represent?
 - **1.2)** Show, by applying the relation $P = U \times I$, that the electric current flowing in (L) is $I_1 = 0.5$ A.
 - **1.3**) Determine, by applying the relation $U_G = U_{rheostat} + U_L$, the voltage across the terminals of the rheostat.
 - **1.4**) Show, <u>by applying Ohm's law</u>, that the resistance of the rheostat is $R_1 = 24 \Omega$.
- 2) The resistance of the rheostat is now adjusted at $R_2 = 0 \Omega$.
 - **2.1**) The voltmeter reads 24 V. Justify.
 - 2.2) The lamp burns out. Explain.

Exercise 4 (5 points) Magnetic force

An iron ball (B), of mass m and of center of gravity G, is suspended to the free extremity of a spring balance which indicates 3 N.

1) (B) is at equilibrium under the action of two forces.

1.1) Give the name of each force.

1.2) Indicate, for each force, whether it is a contact force or force acting from a distance.

1.3) Write the vector relation between these two forces.

1.4) Show that the mass m of (B) is m = 0.3 kg. Take g = 10 N/kg.

2) A bar magnet is placed below (B). The indication of the spring balance increases due to the magnetic force \vec{F} exerted by the magnet on (B).

2.1) Indicate the line of action and the direction of \vec{F} .

2.2) The magnitude F of \vec{F} is 1 N. calculate the length of the vector \vec{F} using the scale: 1 cm $\rightarrow 0.5$ N.