دورة المعام ٢٠١٩ الاستثنائيّة الخميس ١ آب ٢٠١٩ امتحانات الشهادة الثانوية العامة فرع: علوم الحياة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسميّة

الاسم: الرقم: مسابقة في: مادة الفيزياء المدّة: ساعتان

<u>This exam is formed of three exercises in 3 pages.</u> The use of a non-programmable calculator is recommended.

Exercise 1 (7 points)

Characteristics of a coil and a capacitor

Consider:

• a generator G delivering an alternating sinusoidal voltage:

 $u_{AM} = u_G = U_m \cos(\omega t)$ (SI units);

- a coil of inductance L and resistance r;
- a capacitor of capacitance C;
- two resistors of resistances $r_1 = 10 \Omega$ and $r_2 = 32 \Omega$;
- an oscilloscope;
- connecting wires.

The aim of this exercise is to determine L, r and C.

1) Experiment 1

We set-up the circuit of document 1. The circuit thus carries an alternating sinusoidal current i. The oscilloscope, conveniently connected, allows us to display the voltage u_{AM}

across the generator on channel (Y_1) and the voltage

 $u_{BM} = u_r$ across the resistor r_1 on channel (Y₂).

The obtained waveforms are shown in document 2. The adjustments of the oscilloscope are:

- vertical sensitivity on (Y_1): $S_{V1} = 5 \text{ V/div}$;
- vertical sensitivity on (Y_2): $S_{V2} = 0.5 \text{ V/div}$;
- horizontal sensitivity: $S_h = 2.5 \text{ ms/div}$.
- **1-1**) Redraw the circuit of document 1 and show on it the connections of the oscilloscope.
- **1-2)** The waveform (a) represents u_{AM} . Justify.
- 1-3) Referring to document 2, determine:
 - **1-3-1**) the angular frequency ω of the voltage u_{AM} ;
 - **1-3-2**) the amplitudes U_m and U_{m1} of the voltages

 u_{AM} and u_{BM} respectively;

- 1-3-3) the phase difference ϕ between $\,u_{_{AM}}\,\text{and}\,\,u_{_{BM}}\,.$
- **1-4)** Write the expression of the voltage u_{BM} as a function of time.
- **1-5**) Deduce the expression of the current i as a function of time.
- **1-6)** Determine the values of L and r by applying the law of addition of voltages and by giving t two particular values.

2) Experiment 2

The capacitor is connected in series with the electric components of the circuit of document 1 (Doc. 3).

The oscilloscope, conveniently connected, allows us to display the voltage u_{AM} on channel (Y_1) and the voltage u_{BM} on channel (Y_2). The obtained waveforms are represented in document 4.

- **2-1**) The circuit is the seat of current resonance. Justify.
- **2-2)** In case of current resonance, the angular frequency ω of the generator is equal to the proper angular frequency ω_0 of the circuit.

Choose, from the statements below, the one that describes correctly the proper angular frequency ω_0 of the circuit in document 3:

Statement 1: the proper angular frequency of the circuit is the angular frequency of u_{G} such that the current i and

the voltage u across the coil are in phase.

Statement 2: the proper angular frequency of the circuit is the angular frequency of u_G such that the amplitude I_m

of the current i attains a maximum value.

Statement 3: the proper angular frequency of the circuit is the angular frequency of u_G such that the amplitude of the voltage across the coil attains a maximum value.

2-3) Write the relation among L, C and ω_0 . Calculate C.

Exercise 2 (6.5 points)

Mechanical oscillator

Consider a mechanical oscillator formed of a spring, of negligible mass and spring constant k, and an object (S) of mass m.

The aim of this exercise is to determine k and m.

The spring is placed horizontally, connected from one of its extremities to a fixed support. (S) is attached to the other extremity of the spring and it may slide without friction on a horizontal rail AB and its center of mass G can move along a horizontal x-axis.

At equilibrium, G coincides with the origin O of the x-axis (Doc. 5).

(S) is shifted from its equilibrium position and then released without initial velocity at the instant $t_0 = 0$. Thus, (S) performs mechanical oscillations.

At an instant t, the abscissa of G is $x = \overline{OG}$ and the algebraic value of its velocity is $v = \frac{dx}{dt} = x'$.

The horizontal plane containing G is considered as a reference level for gravitational potential energy.

- 1) The differential equation that describes the motion of G is: 2x'' + 200x = 0 (SI units).
 - Use this differential equation to:
 - **1-1**) show that the motion of G is simple harmonic;
 - **1-2**) calculate the value of the proper angular frequency ω_0 of oscillations.
- 2) The time equation of the motion of G is of the form: $x = X_m \cos(\omega_0 t)$, where X_m is the amplitude of x. 2-1) Write the expression of v in terms of X_m , ω_0 and t.

2-2) Using the expressions of x and v, show that: $\omega_0^2 = \frac{v^2}{X_m^2 - x^2}$.

3) Applying the principle of conservation of mechanical energy «ME» of the system [(S), spring, Earth], show that: $x^2 = a v^2 + b$, where «a» and «b» are two constants to be determined in terms of k, m and ME.

- Document 6 shows x² as a function of v². Using document 6:
 - **4-1**) calculate X_m;
 - **4-2**) calculate again the value of ω_0 .
- 5) Determine the values of k and m knowing that ME = 0.04 J.

Exercise 3 (6.5 points)

Dating of a volcanic rock

Some of the volcanic rocks contain the radioactive isotope of potassium ${}^{40}_{19}$ K of half-life T and radioactive constant λ .

A small proportion of this isotope decays into argon $\frac{40}{18}$ Ar .

The aim of this exercise is to determine the age of a volcanic rock.

- 1) Indicate the composition of the potassium $^{40}_{19}$ K nucleus.
- 2) The decay equation of potassium-40 into argon-40 is: ${}^{40}_{19}$ K $\rightarrow {}^{40}_{18}$ Ar + ${}^{A}_{Z}$ X.
 - 2-1) Determine Z and A, indicating the used laws.
 - **2-2**) Name the emitted particle ${}^{A}_{Z}X$.
- 3) A sample of a volcanic rock contains at the instant of its formation, $t_0 = 0$, N_0 nuclei of potassium-40 that decay into argon-40.
 - **3-1**) Write the expression of the remaining number N_K of potassium-40 nuclei in terms of N_0 , t and λ .
 - **3-2)** Deduce that the number of the formed argon-40 nuclei is: $N_{Ar} = N_0 (1 e^{-\lambda t})$.
 - **3-3**) Determine, in terms of λ , the expression of t when $N_{Ar} = N_K$.
- 4) The curves (a) and (b) of document 7 represent N_K and N_{Ar} as functions of time.
 - **4-1**) Specify the curve that represents N_K.
 - **4-2**) Determine graphically the half-life T of potassium-40.
 - **4-3**) Deduce the value of λ .
- 5) The sample of the volcanic rock contains at the instant of its formation, $t_0 = 0$, N₀ nuclei of potassium-40 that decay into argon-40. At this instant the sample does not contain any argon-40 nucleus.

At an instant t:

- N_K is the remaining number of nuclei of N₀ of potassium-40;
- $\bullet \quad N_{Ar} \ is \ the \ formed \ number \ of \ the \ argon-40 \ nuclei.$

A geologist analyzes this sample to determine the age of the volcanic rock. He finds that the number N_{Ar} of argon-40 nuclei is 3 times the number N_K of potassium-40 nuclei.

5-1) Show that
$$\frac{N_0}{N_K} = 4$$
.

5-2) Deduce the age of the rock.

دورة المعام ٢٠١٩ الاستثنائيّة	امتحانات الشهادة الثانوية العامة	وزارة التربية والتعليم العالي
الخميس ١ آب ٢٠١٩	فرع: علوم الحياة	المديرية العامة للتربية

مسابقة في: مادة الفيزياء

دائرة الامتحانات الرسمية أسس التصحيح - إنكليزي

Exercise 1 (7 points)

Characteristics of a coil and a capacitor

Part			Answer	Mark
	1.1		$\begin{array}{c} \textcircled{G} \\ \hline \\ $	0.5
	1.2		In the R-L series circuit, u_G leads i. Since curve (a) leads curve (b), then it represents u_{AM} .	0.5
	1.3	1	T = S _h × x = 2.5×8 = 20 ms = 20×10 ⁻³ s then $\omega = \frac{2\pi}{T} = \frac{2\pi}{20 \times 10^{-3}} = 100 \pi \text{ rad/s}$	0.75
		2	$\begin{split} U_m &= S_{v1} \times y_1 = 2 \times 5 = 10 \ V \\ U_{m1} &= S_{v2} \times y_2 = 2.8 \times 0.5 = 1.4 \ V \end{split}$	0.75
		3	$\varphi = \frac{2\pi \times d}{D} = \frac{2\pi \times 1 \text{ div}}{8 \text{ div}} = \frac{\pi}{4} \text{ rad}$	0.5
1	1.4		u_{AM} leads u_{BM} by $\frac{\pi}{4}$ rad. $u_{BM} = 1.4 \cos (100 \pi t - \frac{\pi}{4})$ (u_{BM} in V and t in s)	0.5
	1.5		$U_{BM} = r_1 \times i$, then $i = \frac{u_{BM}}{r_1} = 0.14 \cos(100 \pi t - \frac{\pi}{4})$ (i in A and t in s)	0.5
	1.6		$\begin{aligned} u_{AM} &= u_{AD} + u_{DB} + u_{BM} \\ U_m \cos (\omega t) &= ri + L \frac{di}{dt} + r_2 i + r_1 i \\ U_m \cos (\omega t) &= r \times 0.14 \cos (100 \ \pi t - \frac{\pi}{4}) + L \left[-14 \sin (100 \ \pi t - \frac{\pi}{4})\right] + (r_2 + r_1) \ 0.14 \cos (100 \ \pi t - \frac{\pi}{4}) \end{aligned}$ For $t &= \frac{\pi}{4\omega} (\omega t = \frac{\pi}{4}) : U_m \ \frac{\sqrt{2}}{2} = r \times 0.14 + 0 + (r_2 + r_1) \ 0.14 \\ 5 \ \sqrt{2} = 0.14 \ r + 42 \times 0.14 \end{aligned}$; we calculate $r = 8,5 \ \Omega$ For $\omega t = 0 : U_m = r \times 0.14 \times \frac{\sqrt{2}}{2} + 14 \ L\pi \ \frac{\sqrt{2}}{2} + (r_2 + r_1) \ 0.14 \ \frac{\sqrt{2}}{2} \\ 10 = 8.5 \times 0.14 \times \frac{\sqrt{2}}{2} + 14 \ L\pi \ \frac{\sqrt{2}}{2} + 42 \times 0.14 \ \frac{\sqrt{2}}{2} \end{aligned}$ we calculate $L = 0,16 \ H \end{aligned}$	0.5 0.5 0.5
2	2.1		u_G and u_{r1} are in phase, with u_1 is the image of i.	0.25
	2.2	2	Statement 2	0.5
	2.3	5	In the case of current resonance, we have $\omega_G = \omega_0 = 100 \ \pi$ and $LC \omega_0^2 = 1$ Then, $C = 6.33 \times 10^{-5} \text{ F}$	0.25 0.5

Mechanical oscillator

Part		Answer	
1	1.1	The differential equation $2x'' + 200x = 0$ can be written as: $x'' + 100x = 0$. Then, it has the form of: $x'' + \omega_0^2 x = 0$ This equation governs a simple harmonic motion of G.	0.75
	1.2	$\omega_0^2 = 100$; $\omega_0 = 10$ rad/s	0.5
	2.1	$ \begin{aligned} \mathbf{x} &= \mathbf{X}_{\mathrm{m}} \cos \left(\omega_{0} t \right) \\ \mathbf{v} &= \mathbf{x}' = -\omega_{0} \mathbf{X}_{\mathrm{m}} \sin \left(\omega_{0} t \right) \end{aligned} $	0.5
2	2.2	$\begin{aligned} \frac{x^2}{x_m^2} &= \cos^2 \omega_0 t \text{ and } \frac{v^2}{\omega_0^2 x_m^2} = \sin^2 \omega_0 t \\ \sin^2 \omega_0 t + \cos^2 \omega_0 t = 1 \text{ , then } \frac{x^2}{X_m^2} + \frac{v^2}{\omega_0^2 X_m^2} = 1 \\ \omega_0^2 X_m^2 &= \omega_0^2 x^2 + v^2 \text{ , then } \omega_0^2 (X_m^2 - x^2) = v^2 \\ \omega_0^2 &= \frac{v^2}{X_m^2 - x^2} \text{ , then verified} \end{aligned}$	0.75
3		ME = constant, then $\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = ME$ $\frac{1}{2}kx^2 = ME - \frac{1}{2}mv^2$ then $x^2 = \frac{2ME}{k} - \frac{mv^2}{k}$ $x^2 = -\frac{m}{k}v^2 - \frac{2ME}{k}$ this equation has the form: $x^2 = av^2 + b$ $a = -\frac{m}{k}$ and $b = \frac{2ME}{k}$	1.25
	4.1	$X_m^2 = 4 \times 10^{-4} \text{ m}^2$, then $X_m = 2 \times 10^{-2} \text{ m} = 2 \text{ cm}$	0.5
4	4.2	When $x^2 = 0$, $v^2 = 0.04$, then $v = 0.2$ m/s $\omega_0^2 = 100$ then $\omega_0 = 10$ rad/s	0.75
	5	At t = 0: v ₀ = 0, X _m = 2×10 ⁻² m ME = KE + EPE + GPE then: 0.04 = 0 + 0 + $\frac{1}{2}$ kX _m ² k = $\frac{2\times0.04}{X_m^2} = \frac{2\times0.04}{4\times10^{-4}} = 200$ N/m When x = 0, V _m = 0.2 m/s ME = $\frac{1}{2}$ mV _m ² then: m = $\frac{2\times ME}{V_m^2} = \frac{2\times0.04}{0.04} = 2$ kg $\frac{OR:}{b = \frac{2\times ME}{k}}$; x ² = av ² + b if v ² = 0, then x ² = 4×10 ⁻⁴ m ² , then 4×10 ⁻⁴ = b = $\frac{2\times ME}{k}$ k = $\frac{2\times ME}{4\times10^{-4}} = 200$ N/m a = $-\frac{m}{k}$; a = $\frac{x^2 - x_0^2}{v^2 - v_0^2} = \frac{0 - 4 \times 10^{-4}}{0.04 - 0} = -10^{-2}$ $-10^{-2} = -\frac{m}{200}$ then m = 2 kg	1.5

Dating of a volcanic rock

Part		Answer	Mark
1		Number of protons $Z = 19$	0.5
		Number of neutrons $N = A - Z = 40 - 19 = 21$	0.0
	2.1	According to the law of conservation of mass number : 40 - 40 + 4 then $4 - 0$	1
2		A = 40 + A then $A = 0According to the law of conservation of charge number :$	
-		19 = 18 + Z then $Z = 1$	
	2.2	${}_{1}^{0}X = {}_{1}^{0}e$, the emitted particle is positron	0.25
	3.1	$N_{\rm K} = N_0 \times e^{-\lambda t}$	0.5
	3.2	$N_{Ar} = N_0 - N_K = N_0 - N_0 \times e^{-\lambda t} = N_0 (1 - e^{-\lambda t})$	0.5
3		$N_{Ar} = N_K$ then $N_0 (1 - e^{-\lambda t}) = N_0 \times e^{-\lambda t}$	
	3.3	then $1 - e^{-\lambda t} = e^{-\lambda t}$ then $2 e^{-\lambda t} = 1$, so $e^{\lambda t} = 2$ then $\lambda t = \ln 2$	0.75
		then t = $\frac{\ln 2}{2}$	
	4.1	(b) represents N_K since N_K decreases exponentially as a function of time.	0.5
4	4.2	When t = T, we have $N_K = \frac{N_0}{2}$. Graphically: T = $\frac{2.6 \times 10^9}{2} = 1.3 \times 10^9$ years	0.75
	4.3	$\lambda = \frac{\ln 2}{T} = \frac{0.693}{1.2 \times 10^9} = 0.533 \times 10^{-9} \text{ year}^{-1} = 0.016 \text{ s}^{-1}$	0.5
	5.1	$\frac{1}{N_0 (1 - e^{-\lambda t})} = 3 \times N_0 \times e^{-\lambda t}$	
		$1 = 3 \times e^{-\lambda t} + e^{-\lambda t} = 4 e^{-\lambda t}$	
		$e^{\lambda t} = 4$	
		Then, $N_{\rm K} = \frac{N_0}{24} = \frac{N_0}{24}$. Then, $\frac{N_0}{24} = 4$ verified	
		$e^{\lambda t}$ 4 $N_{\rm K}$	0.5
5		$\frac{\mathbf{V}\mathbf{V}}{\mathbf{N}_{\mathrm{K}}} = \mathbf{N}_{0} - \mathbf{N}_{\mathrm{Ar}} = \mathbf{N}_{0} - 3\mathbf{N}_{\mathrm{K}}$	
		then 4 N _K = N ₀ , so $\frac{1}{N_{K}} = 4$	
		No	
		$\frac{1}{N_{\rm K}} = 4$	
		$N_0 = 4 \times N_K = 4 \times N_0 \ e^{-\lambda t}$	
		$\frac{1}{4} = e^{-\lambda t} \text{ then } -\lambda t = \ln (0.25) \text{ then } t = \frac{\ln(0.25)}{-\lambda} = \frac{\ln(0.25)}{-\ln 2 \times T} = 2T = 2.6 \times 10^9 \text{ years}$	0.75
		<u>OR :</u>	
		$N_{K} = \frac{N_{0}}{4} = \frac{N_{0}}{2^{2}}$. Then, $t = 2 T = 2 \times 1.3 \times 10^{9} = 2.6 \times 10^{9}$ years	