الالاسم:
 مسابقة في: مادة الفيزياء
 المدّة: ساعتان

This exam is formed of three exercises in 3 pages.

The use of a non-programmable calculator is recommended.

Exercise 1 (7 points)

Characteristics of a coil and a capacitor

Consider:

- a generator G delivering an alternating sinusoidal voltage:

$$
\mathrm{u}_{\mathrm{AM}}=\mathrm{u}_{\mathrm{G}}=\mathrm{U}_{\mathrm{m}} \cos (\omega \mathrm{t}) \text { (SI units); }
$$

- a coil of inductance L and resistance r;
- a capacitor of capacitance C;
- two resistors of resistances $\mathrm{r}_{1}=10 \Omega$ and $\mathrm{r}_{2}=32 \Omega$;
- an oscilloscope;
- connecting wires.

The aim of this exercise is to determine L, r and C .

1) Experiment 1

We set-up the circuit of document 1 . The circuit thus carries an alternating sinusoidal current i. The oscilloscope,
conveniently connected, allows us to display the voltage u_{Am} across the generator on channel (Y_{1}) and the voltage $u_{B M}=u_{r_{1}}$ across the resistor r_{1} on channel (Y_{2}).

The obtained waveforms are shown in document 2 .
The adjustments of the oscilloscope are:

- vertical sensitivity on $\left(\mathrm{Y}_{1}\right): \mathrm{S}_{\mathrm{V} 1}=5 \mathrm{~V} /$ div;
- vertical sensitivity on $\left(\mathrm{Y}_{2}\right): \mathrm{S}_{\mathrm{V} 2}=0.5 \mathrm{~V} / \mathrm{div}$;
- horizontal sensitivity: $\mathrm{S}_{\mathrm{h}}=2.5 \mathrm{~ms} /$ div.

1-1) Redraw the circuit of document 1 and show on it the connections of the oscilloscope.
1-2) The waveform (a) represents $u_{A M}$. Justify.
1-3) Referring to document 2, determine:
1-3-1) the angular frequency ω of the voltage u_{AM};
1-3-2) the amplitudes U_{m} and $U_{m 1}$ of the voltages

$$
\mathrm{u}_{\mathrm{AM}} \text { and } \mathrm{u}_{\mathrm{BM}} \text { respectively; }
$$

1-3-3) the phase difference φ between $u_{\text {AM }}$ and $u_{B M}$.
1-4) Write the expression of the voltage $\mathrm{u}_{\text {вM }}$ as a function
 of time.
1-5) Deduce the expression of the current i as a function of time.
1-6) Determine the values of L and r by applying the law of addition of voltages and by giving t two particular values.

2) Experiment 2

The capacitor is connected in series with the electric components of the circuit of document 1 (Doc. 3).

The oscilloscope, conveniently connected, allows us to display the voltage u_{AM} on channel (Y_{1}) and the voltage u_{BM} on channel (Y_{2}). The obtained waveforms are represented in document 4.

2-1) The circuit is the seat of current resonance. Justify.
2-2) In case of current resonance, the angular frequency ω of the generator is equal to the proper angular frequency ω_{0} of the circuit.
Choose, from the statements below, the one that
 describes correctly the proper angular frequency ω_{0} of the circuit in document 3:
Statement 1: the proper angular frequency of the circuit is the angular frequency of u_{G} such that the current i and the voltage u across the coil are in phase.
Statement 2: the proper angular frequency of the circuit is the angular frequency of u_{G} such that the amplitude I_{m} of the current i attains a maximum value.
Statement 3: the proper angular frequency of the circuit is the angular frequency of u_{G} such that the amplitude of the voltage across the coil attains a maximum value.
2-3) Write the relation among L, C and ω_{0}. Calculate C.

Exercise 2 (6.5 points)

Mechanical oscillator

Consider a mechanical oscillator formed of a spring, of negligible mass and spring constant k , and an object (S) of mass m .
The aim of this exercise is to determine k and m .
The spring is placed horizontally, connected from one of its extremities to a fixed support. (S) is attached to the other extremity of the spring and it may slide without friction on a horizontal rail AB and its center
 of mass G can move along a horizontal x -axis.
At equilibrium, G coincides with the origin O of the x-axis (Doc. 5).
(S) is shifted from its equilibrium position and then released without initial velocity at the instant $\mathrm{t} 0=0$.
Thus, (S) performs mechanical oscillations.
At an instant t, the abscissa of G is $x=\overline{O G}$ and the algebraic value of its velocity is $v=\frac{d x}{d t}=x^{\prime}$.
The horizontal plane containing G is considered as a reference level for gravitational potential energy.

1) The differential equation that describes the motion of G is: 2 x " $+200 \mathrm{x}=0$ (SI units).

Use this differential equation to:
1-1) show that the motion of G is simple harmonic;
1-2) calculate the value of the proper angular frequency ω_{0} of oscillations.
2) The time equation of the motion of G is of the form: $x=X_{m} \cos \left(\omega_{0} t\right)$, where X_{m} is the amplitude of x.
$\mathbf{2 - 1}$) Write the expression of v in terms of X_{m}, ω_{0} and t.
2-2) Using the expressions of x and v, show that: $\omega_{0}^{2}=\frac{v^{2}}{X_{m}^{2}-x^{2}}$.
3) Applying the principle of conservation of mechanical energy «ME» of the system [(S), spring, Earth], show that: $x^{2}=a v^{2}+b$, where «a» and «b» are two constants to be determined in terms of k, m and ME.
4) Document 6 shows x^{2} as a function of v^{2}.

Using document 6 :
4-1) calculate X_{m};
4-2) calculate again the value of ω_{0}.
5) Determine the values of k and m knowing that $\mathrm{ME}=0.04 \mathrm{~J}$.

Exercise 3 (6.5 points)

Dating of a volcanic rock

Some of the volcanic rocks contain the radioactive isotope of potassium ${ }_{19}^{40} \mathrm{~K}$ of half-life T and radioactive constant λ.
A small proportion of this isotope decays into argon ${ }_{18}^{40} \mathrm{Ar}$.
The aim of this exercise is to determine the age of a volcanic rock.

1) Indicate the composition of the potassium ${ }_{19}^{40} \mathrm{~K}$ nucleus.
2) The decay equation of potassium- 40 into argon- 40 is: ${ }_{19}^{40} \mathrm{~K} \rightarrow{ }_{18}^{40} \mathrm{Ar}+{ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}$.

2-1) Determine Z and A, indicating the used laws.
2-2) Name the emitted particle ${ }_{Z}^{A} X$.
3) A sample of a volcanic rock contains at the instant of its formation, $t_{0}=0, N_{0}$ nuclei of potassium- 40 that decay into argon-40.
3-1) Write the expression of the remaining number N_{K} of potassium- 40 nuclei in terms of $\mathrm{N}_{0}, \mathrm{t}$ and λ.
3-2) Deduce that the number of the formed argon-40 nuclei is: $N_{A r}=N_{0}\left(1-e^{-\lambda t}\right)$.
3-3) Determine, in terms of λ, the expression of t when $\mathrm{N}_{\mathrm{Ar}}=\mathrm{N}_{\mathrm{K}}$.
4) The curves (a) and (b) of document 7 represent N_{K} and N_{Ar} as functions of time.
4-1) Specify the curve that represents N_{K}.
4-2) Determine graphically the half-life T of potassium-40.
4-3) Deduce the value of λ.
5) The sample of the volcanic rock contains at the instant of its formation, $\mathrm{t}_{0}=0, \mathrm{~N}_{0}$ nuclei of potassium-40 that decay into argon-40. At this instant the sample does not contain any argon-40 nucleus.
At an instant t :

- N_{K} is the remaining number of nuclei of N_{0} of
 potassium-40;
- N_{Ar} is the formed number of the argon-40 nuclei.

A geologist analyzes this sample to determine the age of the volcanic rock. He finds that the number N_{Ar} of argon-40 nuclei is 3 times the number N_{K} of potassium- 40 nuclei.
5-1) Show that $\frac{N_{0}}{N_{K}}=4$.
5-2) Deduce the age of the rock.

Exercise 1 (7 points)

Characteristics of a coil and a capacitor

Part			Answer	Mark
1.1				0.5
1.2			In the R-L series circuit, u_{G} leads i. Since curve (a) leads curve (b) , then it represents u_{AM}.	0.5
1	1.3	1	$\mathrm{T}=\mathrm{S}_{\mathrm{h}} \times \mathrm{x}=2.5 \times 8=20 \mathrm{~ms}=20 \times 10^{-3} \mathrm{~s}$ then $\omega=\frac{2 \pi}{\mathrm{~T}}=\frac{2 \pi}{20 \times 10^{-3}}=100 \pi \mathrm{rad} / \mathrm{s}$	0.75
		2	$\begin{aligned} & \mathrm{U}_{\mathrm{m}}=\mathrm{S}_{\mathrm{v} 1} \times \mathrm{y}_{1}=2 \times 5=10 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{m} 1}=\mathrm{S}_{\mathrm{v} 2} \times \mathrm{y}_{2}=2.8 \times 0.5=1.4 \mathrm{~V} \end{aligned}$	0.75
		3	$\varphi=\frac{2 \pi \times \mathrm{d}}{\mathrm{D}}=\frac{2 \pi \times 1 \mathrm{div}}{8 \mathrm{div}}=\frac{\pi}{4} \mathrm{rad}$	0.5
	1.4		$\begin{aligned} & \mathrm{u}_{\text {AM }} \text { leads } \mathrm{u}_{\text {BM }} \text { by } \frac{\pi}{4} \text { rad. } \\ & \mathrm{u}_{\mathrm{BM}}=1.4 \cos \left(100 \pi \mathrm{t}-\frac{\pi}{4}\right) \quad(\text { ung in } \mathrm{V} \text { and } \mathrm{t} \text { in } \mathrm{s}) \\ & \hline \end{aligned}$	0.5
	1.5		$U_{B M}=r_{1} \times i$, then $i=\frac{u_{B M}}{r_{1}}=0.14 \cos \left(100 \pi t-\frac{\pi}{4}\right) \quad(i$ in A and t in $s)$	0.5
	1.6		$\begin{aligned} & u_{A M}=u_{A D}+u_{D B}+u_{B M} \\ & U_{m} \cos (\omega t)=r i+L \frac{d i}{d t}+r_{2} i+r_{1} i \\ & U_{m} \cos (\omega t)=r \times 0.14 \cos \left(100 \pi t-\frac{\pi}{4}\right)+L\left[-14 \sin \left(100 \pi t-\frac{\pi}{4}\right)\right]+\left(r_{2}+r_{1}\right) 0.14 \cos \\ & \left(100 \pi t-\frac{\pi}{4}\right) \\ & \text { For } t=\frac{\pi}{4 \omega}\left(\omega t=\frac{\pi}{4}\right): U_{m} \frac{\sqrt{2}}{2}=r \times 0.14+0+\left(r_{2}+r_{1}\right) 0.14 \\ & 5 \sqrt{2}=0.14 r+42 \times 0.14 ; \text { we calculate } r=8,5 \Omega \\ & \text { For } \omega t=0: U_{m}=r \times 0.14 \times \frac{\sqrt{2}}{2}+14 L \pi \frac{\sqrt{2}}{2}+\left(r_{2}+r_{1}\right) 0.14 \frac{\sqrt{2}}{2} \\ & 10=8.5 \times 0.14 \times \frac{\sqrt{2}}{2}+14 L \pi \frac{\sqrt{2}}{2}+42 \times 0.14 \frac{\sqrt{2}}{2} \text { we calculate } L=0,16 H \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$
2	2.1		u_{G} and $u_{r 1}$ are in phase, with u_{1} is the image of i.	0.25
	2.2		Statement 2	0.5
	2.3		In the case of current resonance, we have $\omega_{\mathrm{G}}=\omega_{0}=100 \pi$ and $\mathrm{LC} \omega_{0}{ }^{2}=1$ Then, $\mathrm{C}=6.33 \times 10^{-5} \mathrm{~F}$	$\begin{gathered} 0.25 \\ 0.5 \end{gathered}$

Mechanical oscillator

Part		Answer	Mark
1	1.1	The differential equation $2 \mathrm{x}^{\prime \prime}+200 \mathrm{x}=0$ can be written as: $\mathrm{x}^{\prime \prime}+100 \mathrm{x}=0$. Then, it has the form of: $x "+\omega_{0}^{2} x=0$ This equation governs a simple harmonic motion of G.	0.75
	1.2	$\omega_{0}^{2}=100 ; \omega_{0}=10 \mathrm{rad} / \mathrm{s}$	0.5
2	2.1	$\begin{aligned} & \mathrm{x}=\mathrm{X}_{\mathrm{m}} \cos \left(\omega_{0} \mathrm{t}\right) \\ & \mathrm{v}=\mathrm{x}^{\prime}=-\omega_{0} X_{\mathrm{m}} \sin \left(\omega_{0} \mathrm{t}\right) \end{aligned}$	0.5
	2.2	$\begin{aligned} & \frac{x^{2}}{\mathrm{X}_{\mathrm{m}}^{2}}=\cos ^{2} \omega_{0} \mathrm{t} \text { and } \frac{\mathrm{v}^{2}}{\omega_{0}^{2} \mathrm{X}_{\mathrm{m}}^{2}}=\sin ^{2} \omega_{0} t \\ & \sin ^{2} \omega_{0} \mathrm{t}+\cos ^{2} \omega_{0} \mathrm{t}=1 \text {, then } \frac{x^{2}}{X_{\mathrm{m}}^{2}}+\frac{\mathrm{v}^{2}}{\omega_{0}^{2} X_{\mathrm{m}}^{2}}=1 \\ & \omega_{0}^{2} X_{\mathrm{m}}^{2}=\omega_{0}^{2} x^{2}+\mathrm{v}^{2} \text {, then } \omega_{0}^{2}\left(X_{\mathrm{m}}^{2}-\mathrm{x}^{2}\right)=\mathrm{v}^{2} \\ & \omega_{0}^{2}=\frac{\mathrm{v}^{2}}{X_{\mathrm{m}}^{2}-\mathrm{x}^{2}}, \text { then verified } \end{aligned}$	0.75
3		$\begin{aligned} & \mathrm{ME}=\text { constant, then } \frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} k x^{2}=\mathrm{ME} \\ & \frac{1}{2} \mathrm{kx}^{2}=\mathrm{ME}-\frac{1}{2} \mathrm{mv}^{2} \text { then } \mathrm{x}^{2}=\frac{2 \mathrm{ME}}{\mathrm{k}}-\frac{m v^{2}}{\mathrm{k}} \\ & \mathrm{x}^{2}=-\frac{\mathrm{m}}{\mathrm{k}} \mathrm{v}^{2}-\frac{2 \mathrm{ME}}{\mathrm{k}} \text { this equation has the form: } \mathrm{x}^{2}=\mathrm{av}^{2}+\mathrm{b} \\ & \mathrm{a}=-\frac{\mathrm{m}}{\mathrm{k}} \text { and } \mathrm{b}=\frac{2 \mathrm{ME}}{\mathrm{k}} \end{aligned}$	1.25
4	4.1	$\mathrm{X}_{\mathrm{m}}^{2}=4 \times 10^{-4} \mathrm{~m}^{2}$, then $\mathrm{X}_{\mathrm{m}}=2 \times 10^{-2} \mathrm{~m}=2 \mathrm{~cm}$	0.5
	4.2	When $\mathrm{x}^{2}=0, \mathrm{v}^{2}=0.04$, then $\mathrm{v}=0.2 \mathrm{~m} / \mathrm{s}$ $\omega_{0}^{2}=100$ then $\omega_{0}=10 \mathrm{rad} / \mathrm{s}$	0.75
5		At $t=0: v_{0}=0, X_{m}=2 \times 10^{-2} \mathrm{~m}$ $\mathrm{ME}=\mathrm{KE}+\mathrm{EPE}+$ GPE then: $0.04=0+0+\frac{1}{2} \mathrm{kX} \mathrm{X}_{\mathrm{m}}^{2}$ $\mathrm{k}=\frac{2 \times 0.04}{X_{m}^{2}}=\frac{2 \times 0.04}{4 \times 10^{-4}}=200 \mathrm{~N} / \mathrm{m}$ When $\mathrm{x}=0, \mathrm{~V}_{\mathrm{m}}=0.2 \mathrm{~m} / \mathrm{s}$ $\mathrm{ME}=\frac{1}{2} \mathrm{mV} V_{\mathrm{m}}^{2}$ then: $\mathrm{m}=\frac{2 \times M E}{V_{m}^{2}}=\frac{2 \times 0.04}{0.04}=2 \mathrm{~kg}$ OR: $\mathrm{b}=\frac{2 \times M E}{k} ; \mathrm{x}^{2}=\mathrm{av}^{2}+\mathrm{b}$ if $\mathrm{v}^{2}=0$, then $\mathrm{x}^{2}=4 \times 10^{-4} \mathrm{~m}^{2}$, then $4 \times 10^{-4}=\mathrm{b}=\frac{2 \times M E}{k}$ $\begin{aligned} & \mathrm{k}=\frac{2 \times M E}{4 \times 10^{-4}}=200 \mathrm{~N} / \mathrm{m} \\ & \mathrm{a}=-\frac{m}{k} ; \mathrm{a}=\frac{x^{2}-x_{0}^{2}}{v^{2}-v_{0}^{2}}=\frac{0-4 \times 10^{-4}}{0.04-0}=-10^{-2} \\ & -10^{-2}=-\frac{m}{200} \text { then } \mathrm{m}=2 \mathrm{~kg} \end{aligned}$	1.5

Dating of a volcanic rock

Part		Answer	Mark
1		Number of protons $\mathrm{Z}=19$ Number of neutrons $\mathrm{N}=\mathrm{A}-\mathrm{Z}=40-19=21$	0.5
2	2.1	According to the law of conservation of mass number : $40=40+$ A then $A=0$ According to the law of conservation of charge number : $19=18+Z \text { then } Z=1$	1
	2.2	${ }_{1}^{0} \mathrm{X}={ }_{1}^{0} \mathrm{e}$, the emitted particle is positron	0.25
3	3.1	$\mathrm{N}_{\mathrm{K}}=\mathrm{N}_{0} \times \mathrm{e}^{-\lambda \mathrm{t}}$	0.5
	3.2	$\mathrm{N}_{\mathrm{Ar}}=\mathrm{N}_{0}-\mathrm{N}_{\mathrm{K}}=\mathrm{N}_{0}-\mathrm{N}_{0} \times \mathrm{e}^{-\lambda \mathrm{t}}=\mathrm{N}_{0}\left(1-\mathrm{e}^{-\lambda \mathrm{t}}\right)$	0.5
	3.3	$\mathrm{N}_{\mathrm{Ar}}=\mathrm{N}_{\mathrm{K}} \text { then } \mathrm{N}_{0}\left(1-\mathrm{e}^{-\lambda \mathrm{t}}\right)=\mathrm{N}_{0} \times \mathrm{e}^{-\lambda \mathrm{t}}$ then $1-\mathrm{e}^{-\lambda \mathrm{t}}=\mathrm{e}^{-\lambda \mathrm{t}}$ then $2 \mathrm{e}^{-\lambda \mathrm{t}}=1$, so $\mathrm{e}^{\lambda \mathrm{t}}=2$ then $\lambda \mathrm{t}=\ln 2$ then $\mathrm{t}=\frac{\ln 2}{\lambda}$	0.75
4	4.1	(b) represents N_{K} since N_{K} decreases exponentially as a function of time.	0.5
	4.2	When $\mathrm{t}=\mathrm{T}$, we have $\mathrm{N}_{\mathrm{K}}=\frac{\mathrm{N}_{0}}{2}$. Graphically: $\mathrm{T}=\frac{2.6 \times 10^{9}}{2}=1.3 \times 10^{9}$ years	0.75
	4.3	$\lambda=\frac{\ln 2}{T}=\frac{0.693}{1,3 \times 10^{9}}=0.533 \times 10^{-9} \mathrm{year}^{-1}=0.016 \mathrm{~s}^{-1}$	0.5
5	5.1	$\begin{aligned} & \mathrm{N}_{0}\left(1-\mathrm{e}^{-\lambda \mathrm{t}}\right)=3 \times \mathrm{N}_{0} \times \mathrm{e}^{-\lambda \mathrm{t}} \\ & 1=3 \times \mathrm{e}^{-\lambda \mathrm{t}}+\mathrm{e}^{-\lambda \mathrm{t}}=4 \mathrm{e}^{-\lambda \mathrm{t}} \\ & \mathrm{e}^{\lambda \mathrm{t}}=4 \end{aligned}$ Then, $N_{K}=\frac{N_{0}}{e^{\lambda t}}=\frac{N_{0}}{4}$. Then, $\frac{N_{0}}{N_{K}}=4$ verified Or: $\begin{aligned} & \mathrm{N}_{\mathrm{K}}=\mathrm{N}_{0}-\mathrm{N}_{\mathrm{Ar}}=\mathrm{N}_{0}-3 \mathrm{~N}_{\mathrm{K}} \\ & \text { then } 4 \mathrm{~N}_{\mathrm{K}}=\mathrm{N}_{0} \text {, so } \frac{\mathrm{N}_{0}}{\mathrm{~N}_{\mathrm{K}}}=4 \end{aligned}$	0.5
	5.2	$\begin{aligned} & \frac{\mathrm{N}_{0}}{\mathrm{~N}_{\mathrm{K}}}=4 \\ & \mathrm{~N}_{0}=4 \times \mathrm{N}_{\mathrm{K}}=4 \times \mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}} \end{aligned}$ $\frac{1}{4}=\mathrm{e}^{-\lambda \mathrm{t}}$ then $-\lambda \mathrm{t}=\ln (0.25)$ then $\mathrm{t}=\frac{\ln (0,25)}{-\lambda}=\frac{\ln (0,25)}{-\ln 2 \times \mathrm{T}}=2 \mathrm{~T}=2.6 \times 10^{9}$ years OR: $\mathrm{N}_{\mathrm{K}}=\frac{\mathrm{N}_{0}}{4}=\frac{\mathrm{N}_{0}}{2^{2}}$. Then, $\mathrm{t}=2 \mathrm{~T}=2 \times 1.3 \times 10^{9}=2.6 \times 10^{9}$ years	0.75

