This exam is formed of three exercises in 9 pages.
The use of a non-programmable calculator is recommended.

المدة: ساعتّان
(اللغة الإكلليزية)

Exercise 1 (7 points)

Characteristics of a coil and a capacitor

Consider:

- a generator G delivering an alternating sinusoidal voltage :

$$
\mathbf{u}_{\mathrm{AM}}=\mathbf{u}_{\mathrm{G}}=\mathbf{U}_{\mathbf{m}} \cos (\omega \mathbf{t}) \text { (SI units); }
$$

- a coil of inductance \mathbf{L} and resistance \mathbf{r};
- a capacitor of capacitance \mathbf{C};
- two resistors of resistances $\mathbf{r}_{1}=\mathbf{1 0} \Omega$ and $\mathbf{r}_{2}=\mathbf{3 2} \Omega$;
- an oscilloscope;
- connecting wires.

The aim of this exercise is to determine \mathbf{L}, \mathbf{r} and \mathbf{C}.

1) Experiment 1

We set-up the circuit of document 1 .

Doc. 1
The circuit thus carries an alternating sinusoidal current \mathbf{i}.
The oscilloscope, conveniently connected, allows us to display the voltage $\mathbf{u}_{\text {AM }}$ across the generator on channel $\left(\mathbf{Y}_{\mathbf{1}}\right)$ and the voltage $\mathbf{u}_{\mathbf{B M}}=\mathbf{u}_{\mathbf{r}_{\mathbf{1}}}$ across the resistor $\mathbf{r}_{\mathbf{1}}$ on channel $\left(\mathbf{Y}_{2}\right)$.

The obtained waveforms are shown in document 2.
The adjustments of the oscilloscope are:

- vertical sensitivity on $\left(\mathbf{Y}_{\mathbf{1}}\right): \mathbf{S}_{\mathbf{v 1}}=\mathbf{5} \mathbf{V} /$ div;
- vertical sensitivity on $\left(\mathbf{Y}_{2}\right): \mathbf{S}_{\mathbf{v} 2}=\mathbf{0 . 5} \mathbf{V} /$ div;
- horizontal sensitivity: $\mathbf{S}_{\mathbf{h}}=\mathbf{2 . 5} \mathbf{~ m s} /$ div.

Doc. 2
1-1) Redraw the circuit of document 1 and show on it the connections of the oscilloscope.
1-2) Justify that the waveform (a) represents $\mathbf{u}_{\text {AM }}$.

1-3) Referring to document 2:

1-3-1)determine the angular frequency ω of the voltage $u_{A M}$;
1-3-2)determine the amplitudes $\mathbf{U}_{\mathbf{m}}$ of the voltage \mathbf{u}_{AM}.
determine the amplitudes $\mathbf{U}_{\mathbf{m} 1}$ of the voltages u_{BM}.
1-3-3)determine the phase difference φ between $u_{A M}$ and $u_{B M}$.
1-4) Deduce the expression of the voltage $\mathbf{u}_{\mathbf{B M}}$ as a function of time knowing that $\mathbf{u}_{\mathbf{B m}}$ lags behind $\mathbf{u}_{\text {AM. }}$.
1-5) Deduce the expression of the current \mathbf{i} as a function of time knowing that $\mathbf{i}=\frac{\mathbf{u}_{\mathbf{B M}}}{\mathbf{r}_{\mathbf{1}}}$.
1-6) Determine the values of \mathbf{L} and \mathbf{r} by applying the law of addition of voltages
$\left(\mathbf{u}_{\mathbf{A M}}=\mathbf{u}_{\mathbf{A D}}+\mathbf{u}_{\mathbf{D B}}+\mathbf{u}_{\mathbf{B M}}\right)$ and by giving $(\boldsymbol{\omega t})$ two particular values:
$\omega \mathbf{t}=\frac{\pi}{4} \quad$ and $\quad \omega \mathbf{t}=\mathbf{0}$

2) Experiment 2

In the circuit of document 1 of the experiment 1 , we connect the in series with the electric components, we obtain the circuit of the document 3 .

The oscilloscope, conveniently connected, allows us to display the voltage $\mathbf{u}_{\text {Am }}$ on channel $\left(\mathbf{Y}_{1}\right)$ and the voltage $\mathbf{u}_{\text {вм }}$ on channel $\left(\mathbf{Y}_{2}\right)$.

Doc. 3
The obtained waveforms are represented in document 4.

Doc. 4

2-1) Justify that the circuit is the seat of current resonance..

2-2) In case of current resonance, the angular frequency ω of the generator is equal to the proper angular frequency ω_{0} of the circuit. $\left(\omega=\omega_{0}\right)$

Choose, from the statements below, the one that describes correctly the proper angular frequency ω_{0} of the circuit of doc.3:

Statement 1	Statement 2	Statement 3
The proper angular frequency	The proper angular frequency	The proper angular frequency
of the circuit is the angular	of the circuit is the angular	of the circuit is the angular
frequency of G such that the		
frequency of G such that the		
frequency of G such that the		
current i and the voltage	amplitude I_{m} of the current i	amplitude of the voltage
across the coil are in phase.	attains a maximum value.	across the coil attains a maximum value.

2-3) Write the relation among L, C and ω_{0}.
Calculate C.

Exercise 2 (6.5 points)

Mechanical oscillator

Consider a mechanical oscillator formed of a spring, of negligible mass and spring constant \mathbf{k}, and an object (\mathbf{S}) of mass \mathbf{m}.

The aim of this exercise is to determine \mathbf{k} and \mathbf{m}.
The spring is placed horizontally, fixed from one of its extremities to a fixed support. (\mathbf{S}) is attached to the other extremity of the spring and it may slide without friction on a horizontal rail $\mathbf{A B}$ and its center of mass \mathbf{G} can move along a horizontal \mathbf{x}-axis. At equilibrium, \mathbf{G} coincides with the origin \mathbf{O} of the \mathbf{x}-axis (Doc. 5).

(\mathbf{S}) is shifted from its equilibrium position \mathbf{O} and then released without initial velocity at the instant $\mathrm{t}_{0}=0$.

Thus (S) performs mechanical oscillations.
At an instant t, the abscissa of \mathbf{G} is $\mathbf{x}=\overline{\mathbf{O G}}$ and the algebraic value of its velocity is $\mathbf{v}=\frac{\mathbf{d x}}{\mathbf{d t}}=\boldsymbol{x}^{\prime}$. The horizontal plane containing \mathbf{G} is considered as a reference level for gravitational potential energy (GPE =0).

1) The differential equation that describes the motion of \mathbf{G} is: $\mathbf{2} \mathbf{x}^{\prime \prime}+\mathbf{2 0 0 x}=\mathbf{0}$ (SI units). Use this differential equation to:
1-1) show that the motion of \mathbf{G} is simple harmonic;
1-2) calculate the value of the proper angular frequency ω_{0} of oscillations.
2) The time equation of the motion of \mathbf{G} is of the form: $\mathbf{x}=\mathbf{X}_{\mathbf{m}} \boldsymbol{\operatorname { c o s }}\left(\omega_{0} \mathbf{t}\right)$, where $\mathbf{X}_{\mathbf{m}}$ is the amplitude of \mathbf{x}.

2-1) Write the expression of \mathbf{v} in terms of $\mathbf{X}_{\mathbf{m}}, \omega_{0}$ and \mathbf{t}.
2-2) Given: $\boldsymbol{\operatorname { s i n }}^{2} \boldsymbol{\omega}_{0} \mathbf{t}+\boldsymbol{\operatorname { c o s }}^{2} \boldsymbol{\omega}_{0} \mathrm{t}=\mathbf{1}$ and using the expressions of x and v :
show that $\boldsymbol{\omega}_{0}^{2}=\frac{\mathbf{v}^{2}}{\mathbf{x}_{\mathbf{m}}^{2}-\mathbf{x}^{2}}$.
3) Applying the principle of conservation of mechanical energy «ME» of the system $[(\mathrm{S})$, spring, Earth],
Show that $\mathbf{x}^{2}=\mathbf{a} \mathbf{v}^{\mathbf{2}}+\mathbf{b}$; where «a» and «b» are two constants. terms of k, m and ME.
Deduce that $\mathbf{a}=-\frac{\mathbf{m}}{\mathbf{k}}$ and $\mathbf{b}=\frac{2 \mathrm{ME}}{\mathbf{k}}$.
4) Document 6 shows $\underline{\mathbf{x}}^{2}$ as a function of \mathbf{v}^{2}.

Doc. 6
Using document 6:
4-1) Indicate $X_{m}{ }^{2}$, then calculate X_{m}.
4-2) Calculate again the value of ω_{0} referring to the part 2.2. and by choosing a particular point from doc. 6 .
5) Determine the values of \mathbf{k} and \mathbf{m} knowing that the $\mathbf{M E}=\mathbf{0 . 0 4} \mathbf{J}$.

Exercise 3 (6.5 points)

Dating of a volcanic rock

Some of the volcanic rocks contain the radioactive isotope of potassium ${ }_{19}^{40} \mathbf{K}$ of half-life \mathbf{T} and radioactive constant λ.

A small proportion of this isotope decays into argon ${ }_{18}^{40} \mathrm{Ar}$.
The aim of this exercise is to determine the age of a volcanic rock.

1) Indicate the composition (number of protons and neutrons) of the potassium ${ }_{19}^{40} \mathrm{~K}$ nucleus.
2) The decay equation of potassium- 40 into argon- 40 is:

$$
{ }_{19}^{40} \mathrm{~K} \rightarrow{ }_{18}^{40} \mathrm{Ar}+{ }_{\mathrm{Z}}^{\mathrm{A}} \mathbf{X}
$$

2-1) Determine $\underline{\mathbf{Z}}$ and \mathbf{A};
Indicate the two laws used.
2-2) Name the emitted particle ${ }_{Z}^{A} X$.
3) A sample of a volcanic rock contains at the instant of its formation, $\mathbf{t}_{\mathbf{0}}=\mathbf{0}$,
$\mathbf{N}_{\mathbf{0}}$ nuclei of potassium-40 that decay into argon-40.
3-1) Write the expression of the remaining number N_{K} of potassium- 40 nuclei in terms of N_{0}, λ and t.

3-2) Deduce that the number of the formed argon-40 nuclei is: $\mathbf{N}_{\mathbf{A r}}=\mathbf{N}_{\mathbf{0}}\left(\mathbf{1}-\mathbf{e}^{-\lambda t}\right)$.
3-3) Determine, in terms of λ, the expression of t when $\mathbf{N}_{\mathbf{A r}}=\mathbf{N}_{\mathbf{K}}$.
4) The curves (a) and (b) of document 7 represent \mathbf{N}_{K} and $\mathbf{N}_{\mathbf{A r}}$ as functions of time.

Doc. 7

4-1) Specify the curve that represents \mathbf{N}_{K}.
4-2) Determine graphically the half-life T of potassium- 40 .
4-3) Verify that the value of $\lambda=0.533 \times 10^{-9}$ year $^{-1}$
5) The sample of the volcanic rock contains at the instant of its formation, $\mathbf{t}_{\mathbf{0}}=\mathbf{0}, \mathbf{N}_{\mathbf{0}}$ nuclei of potassium-40 that decay into argon-40.

At this instant the sample does not contain any argon-40 nucleus.
At an instant \mathbf{t} :

- \mathbf{N}_{K} is the remaining number of nuclei of N_{0} of potassium-40;
- \mathbf{N}_{Ar} is the formed number of the argon-40 nuclei.

A geologist analyzes this sample to determine the age of the volcanic rock. He finds that the number $\mathbf{N}_{\mathbf{A r}}$ of argon-40 nuclei is 3 times the number $\mathbf{N}_{\mathbf{K}}$ of potassium-40 nuclei ($\left.\mathbf{N}_{\mathrm{Ar}}=\mathbf{3} \mathbf{N}_{\mathrm{K}}\right)$.

5-1) Show that $\frac{\mathbf{N}_{0}}{\mathbf{N}_{\mathrm{K}}}=4$.
5-2) Deduce that the age of the rock is $\mathbf{2 . 6 \times 1 0 ^ { 9 }}$ years.

