ملاحظة: - يسمح باستعمال آلة حاسبة غبر قابلة للبرمجة او اخنزان المعلومـات او رسم الييانات. - يستطيع المرشّح الإجابة بالنرتيب الذي يناسبه (دون الالنز ام بترتيب المسائل الواردة في المسابقة).

مسابقة في مـادة الرّياضيـات

المدّة: ساعتان

باللّغة الانكليزية

I- (4 points)
The table below shows the population ($\mathbf{y}_{\mathbf{i}}$) of a certain village from the year 1990 till the year 2015, and the rank of the corresponding year (x_{i}).

Year	$\mathbf{1 9 9 0}$	$\mathbf{1 9 9 5}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 5}$
Rank of the year: $\mathbf{x}_{\mathbf{i}}$	0	5	10	15	20	25
Population: $\mathbf{y}_{\mathbf{i}}$	5445	5940	6285	6695	7085	7550

Part A

1)Calculate $\overline{\mathbf{X}}$ and $\overline{\mathbf{Y}}$, the respective means of the two variables \mathbf{x}_{i} and \mathbf{y}_{i}.
2)Calculate the percentage increase of the population from 1990 to 2015.
3)Determine the coefficient of correlation \mathbf{r}.

Interpret the obtained value.
4)Determine the equation of the regression line, of y in terms of x,
$\left(D_{y / x}\right): \mathbf{y}=\mathbf{m x}+\mathbf{n}$,
where m and n are two real numbers (Round m and n to the nearest 10^{-1}).

Part B

Suppose that the preceding model remains valid till the year 2024.
1)Solve the inequality $\mathbf{y}>8250$.

Determine the year in which the population of this village exceeds 8250 for the first time.
2)In this village, the number of people who used the internet in the year 2018 was 2000.

Assume that this number increases by $\mathbf{1 0 0}$ people per year.
a-Calculate the number of people in the village who will use the internet in the year 2024.
b-In 2024, suppose that two people are randomly and successively interviewed from this village. Calculate the probability that these two people use the internet.

II- (4 points)

In a sport club:

- $\mathbf{4 0} \%$ of the members are girls, among which $\mathbf{3 0} \%$ participate in the national competition
- 60% of the members are boys, among which $\mathbf{8 0} \%$ participate in the national competition.

Part A

One member is randomly selected from the club.
Consider the following events:
G: "The selected member is a girl"
B: "The selected member is a boy"
C: "The selected member participates in the national competition".

1) Calculate the probability $\mathbf{P}(\mathbf{G} \cap \mathbf{C})$

Verify that $\mathbf{P}(\mathbf{C})=\frac{\mathbf{3}}{\mathbf{5}}$.
2) The selected member did not participate in the national competition.

Calculate the probability that this member is a boy.

Part B

This club has $\mathbf{5 0}$ members.
The manager of the club decides to select randomly and simultaneously a group of three members to represent the club abroad.

1) Verify that the number of girls in this club is 20 .

Determine the number of boys in this club.
2)Verify that the probability of selecting a group that consists of two girls and one boy is $\frac{\mathbf{5 7}}{\mathbf{1 9 6}}$.
3)Verify that the probability of selecting a group that consists of at least one girl and at least one boy is $\frac{\mathbf{3 6}}{49}$.

III- (4 points)
Hadi is an employee at a bank.
In January 2018, Hadi's monthly salary was $\mathbf{1 5 0 0 0 0 0}$ LL.
Each month his salary increases by $\mathbf{0 . 2} \%$ with an additional bonus of $\mathbf{4 8 0 0 0} \mathbf{L L}$.
For all natural numbers $\mathbf{n} \geq \mathbf{1}$, denote by $\mathbf{a}_{\mathbf{n}}$ Hadi's monthly salary, in millions LL, in the nth month. Thus $\mathbf{a}_{1}=\mathbf{1 . 5}$.

1) Calculate \mathbf{a}_{2}.

2) For all $\mathbf{n} \geq 1, \mathbf{a}_{\mathbf{n}+1}=(\mathbf{1 . 0 0 2}) \mathbf{a}_{\mathbf{n}}+\mathbf{0 . 0 4 8}$. a-Let $V_{n}=\mathbf{a}_{\mathrm{n}} \mathbf{+ 2 4}$.

Show that $\left(\mathbf{V}_{\mathbf{n}}\right)$ is a geometric sequence whose common ratio is $\mathbf{1 . 0 0 2}$ then determine its $1^{\text {st }}$ term \mathbf{V}_{1}.
b-Express $\mathbf{V}_{\mathbf{n}}$ in terms of \mathbf{n}.
Show that $\mathbf{a}_{\mathrm{n}}=25.5 \times(\mathbf{1 . 0 0 2})^{\mathrm{n}-1}-24$ for all $\mathrm{n} \geq 1$.
3)Hadi wants to buy a car that costs $\mathbf{2 5 0 0 0 0 0 0} \mathbf{L L}$.

Starting from the month of January 2018, the bank offered Hadi the following:

Each month, Hadi deposits $\mathbf{7 0 0} 000$ LL from his monthly salary in a savings account with an annual interest rate of $\mathbf{6} \%$ compounded monthly. a-Verify that the amount of money in Hadi's account, after \mathbf{n} months, is expressed as

$$
\left[140(\mathbf{1 . 0 0 5})^{\mathrm{n}}-\mathbf{1 4 0}\right] \text { millions LL for all } \mathbf{n} \geq 1
$$

b-Solve the inequality $140(1.005)^{n}-140>25$
Determine the minimum number of months needed for Hadi to be able to buy this car.

IV- (8 points)

Part A

Consider the function \mathbf{f} defined over $] \mathbf{0},+\infty\left[\right.$ as $\mathbf{f}(\mathbf{x})=\frac{\mathbf{1}}{\mathbf{x}}-\mathbf{x e}^{\mathbf{x}-\mathbf{1}}$.
Denote by (\mathbf{C}) the representative curve of \mathbf{f} in an orthonormal system $(\mathbf{O} ; \overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}})$.
1)Determine $\lim _{x \rightarrow 0} f(x)$

$$
\mathrm{x} \rightarrow 0
$$

Deduce an asymptote to (C).
2)Determine $\lim _{x \rightarrow+\infty} f(x)$ and calculate $f(2)$.
3)The adjacent table is the table of variations of the function f.

a- Copy and complete the given table.
b-Prove that $\mathbf{x}=\mathbf{1}$ is the unique solution of the equation $\mathbf{f}(\mathbf{x})=\mathbf{0}$.
4) Draw (C).
5) The area of the domain bounded by (C), the x-axis, and the two lines of equations $\mathbf{x}=\mathbf{1}$ and $\mathbf{x}=\mathbf{2}$ is equal to $(\mathbf{e}-\ln 2)$ units of area.

- Calculate $\int_{1}^{2} \frac{1}{\mathbf{x}} \mathrm{dx}$
- Use this area to calculate the exact value of $\int_{1}^{2} x^{x-1} d x$.

Part B

A factory produces a certain liquid detergent.
The marginal cost $\mathbf{M}_{\mathbf{C}}$ of production of this factory is modeled as
$\mathbf{M}_{\mathbf{C}}(\mathbf{x})=(\mathbf{x}+\mathbf{1}) \mathbf{e}^{\mathbf{x}-\mathbf{1}}$, in millions LL,
where \mathbf{x} is the quantity produced of this factory, in thousands of liters ; $\mathbf{x} \in[\mathbf{0 ; 5}]$.
1)Knowing that the fixed cost of this factory is 1000000 LL , show that the total cost $\mathbf{C}_{\mathbf{T}}$ of production of this factory is modeled as $\mathbf{C}_{\mathbf{T}}(\mathbf{x})=\mathbf{x} \mathbf{e}^{\mathbf{x}-\mathbf{1}}+\mathbf{1}$ in millions LL.
2)Denote by $\overline{\mathbf{C}}$ the average cost of production of this factory.
a-Verify that $\overline{\mathbf{C}}(\mathbf{x})-\mathbf{M}_{\mathbf{C}}(\mathbf{x})=\mathbf{f}(\mathbf{x})$ where $\left.\left.\mathbf{x} \in\right] 0 ; 5\right]$ and $\overline{\mathbf{C}}(\mathbf{x})$ in millions LL. b-In this part, we admit that the average cost is minimum if it is equal to the marginal cost: $\overline{\mathbf{C}}(\mathbf{x})=\mathbf{M}_{\mathbf{C}}(\mathbf{x})$.

Determine, in liters, the quantity to be produced of this detergent for the average cost to be minimum.
3)a- For a certain reason, the factory sold $\mathbf{6 0} \%$ of its production for 5000 LL the liter and the remaining $\mathbf{4 0} \%$ for $\mathbf{2 5 0 0} \mathbf{L L}$ the liter. Knowing that the entire quantity produced of this detergent is sold, Verify that the revenue $R(x)$ in millions $L L$ is $R(x)=4 x$. b- This factory produced $\mathbf{1 8 0 0}$ liters of this detergent and sold $\mathbf{7 5 \%}$ of this production.
Calculate the number of liters sold by this factory.
Does the realized revenue cover the cost of this production? Justify.

