ملاحظة: - يسمح باستعمال آلة حاسبة غبر قابلة للبرمجة او اخنز ان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي بناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

مسابقة في مادة الرياضيات الددة: ساعتان
 (باللغة الإنكليزية)

الرقم:

I- (4 points)

The space is referred to a direct orthonormal $\operatorname{system}(\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}}, \overrightarrow{\mathrm{k}})$.
Consider the points $\mathbf{A}(6,0,0), \mathbf{B}(0,6,0)$ and $\mathbf{C}(0,0,6)$.
Let (Ω) be the circle circumscribed about triangle $\mathbf{A B C}$.

1) Show that triangle ABC is equilateral.
2) Write a cartesian equation of the plane (\mathbf{P}) determined by the points \mathbf{A}, \mathbf{B} and \mathbf{C}.
3) a- Show that point $\mathbf{H}(2,2,2)$ is the orthogonal projection of point \mathbf{O} on ($\mathbf{P})$.
b- Verify that \mathbf{H} is the center of $(\boldsymbol{\Omega})$.
c- Show that the volume of tetrahedron OABC is triple the volume of tetrahedron OAHB.
4) Consider the line (D) with parametric equations: $\left\{\begin{array}{l}x=6 \\ y=-m \\ z=m\end{array}\right.$; where $m \in \square$.

Show that (D) is tangent to ($\mathbf{\Omega}$) at \mathbf{A}.

II- (4 points)

A survey conducted on a group of patients showed that these patients either have a heart disease only or a lung disease only or both diseases.

It was noted that:

- 60% of the patients are men.
- Among the men: $\mathbf{2 0} \%$ have a heart disease only and $\mathbf{5 0 \%}$ have a lung disease only.
- Among the women: $\mathbf{2 5 \%}$ have a heart disease only and $\mathbf{4 0 \%}$ have both diseases.

Part A

One patient is selected at random.
Consider the following events:

- M: "The selected patient is a man"
- H: "The selected patient has a heart disease only"
- L: "The selected patient has a lung disease only"
- B: "The selected patient has both diseases".

1) a- Calculate the probability:

- $\mathrm{P}(\mathrm{M} \cap \mathrm{H})$
- $\mathrm{P}(\mathrm{M} \cap \mathrm{L})$
- $\mathrm{P}(\mathrm{M} \cap \mathrm{B})$.

2) Calculate :

- $\mathrm{P}(\mathrm{H})$
- $\mathrm{P}(\mathrm{L})$.

Verify that $\mathrm{P}(\mathrm{B})=\frac{17}{50}$
3) Show that $\mathrm{P}(\mathrm{H} \cup \mathrm{L})=\frac{33}{50}$.
4) Knowing that the selected patient has only one disease, calculate the probability that this patient has a heart disease.

Part B

The group consists of $\mathbf{5 0 0}$ patients.
The names of three patients were randomly and simultaneously selected to get each a free insurance policy.

Knowing that the three selected patients have both diseases, calculate the probability that they are men.

III- (4 points)

The complex plane is referred to a direct orthonormal system $(O ; \vec{u}, \vec{v})$.

Consider the points \mathbf{A} and \mathbf{B} with affixes $\mathbf{1}$ and $\mathbf{- 2}$ respectively.
M and M^{\prime} are two points with respective affixes z and z^{\prime} such that $z^{\prime}=\frac{\bar{z}+2}{\bar{z}}$ with $z \neq 0$.

1) Write z in exponential form in the case where $z^{\prime}=1+i$.
2) a-Show that :

- $|\bar{z}+2|=B M$
- $\quad \mathrm{OM}^{\prime}=\frac{\mathrm{BM}}{\mathrm{OM}}$.
b- If $\left|z^{\prime}\right|=1$, show that M is on a straight line to be determined.

3) a- For all $z \neq 0$, show that $\bar{z}\left(z^{\prime}-1\right)=2$.
b- For all $z \neq 0$, verify that $\arg \left(z^{\prime}-1\right)=\arg (z)+2 k \pi$ with $k \in \mathbf{Z}$.
c- In this part, suppose that $\mathrm{z}^{\prime}=1+\mathrm{e}^{\mathrm{i} \theta}$ with $\left.\left.\theta \in\right]-\pi, \pi\right]$.

Show that $\overrightarrow{\mathrm{OM}}=2 \overrightarrow{\mathrm{AM}^{\prime}}$.

Part A

Consider the differential equation $(E): y^{\prime}-y=-2 x$.
Let $\mathrm{y}=\mathbf{z}+2 \mathrm{x}+2$.

1) Form the differential equation (\mathbf{E}^{\prime}) satisfied by \mathbf{z}.
2) Solve (E^{\prime}).

Deduce the particular solution of (\mathbf{E}) satisfying $\mathrm{y}(0)=0$.

Part B

Consider the function \mathbf{f} defined over $]-\infty,+\infty\left[\right.$ as $f(x)=2 x+2-2 e^{x}$.
Denote by (C) the representative curve of \mathbf{f} in an orthonormal system $(\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}})$.
Let (Δ) be the straight line with equation $y=2 x+2$.

1) a-Determine $\lim _{x \rightarrow-\infty} f(x)$.
b- Show that (C) is below (Δ) for all x .
c- Show that (Δ) is an asymptote to (C).
2) Determine $\lim _{x \rightarrow+\infty} f(x)$.

Calculate f (1) and $\mathrm{f}(1.5)$.
3) Calculate $f^{\prime}(x)$.

Set up the table of variations of \mathbf{f}.
4) Draw (Δ) and (C).
5) a-Show that \mathbf{f} has, over $] 0,+\infty[$, an inverse function \mathbf{g}.

Determine the domain of definition of \mathbf{g}.
b- Denote by (G) the representative curve of \mathbf{g}.
Denote by (T) the tangent to (C) at the point L with abscissa $\ln \left(\frac{3}{2}\right)$.
Show that (\mathbf{T}) is $\underline{\text { tangent }}$ to (\mathbf{G}) at a point \mathbf{L}^{\prime} whose abscissa is $2 \ln \left(\frac{3}{2}\right)-1$.

