مسابقةّ في مادة الفيزياء
المدة: ساعتان

This exam is formed of three obligatory exercises in three pages.
 The use of non-programmable calculators is recommended.

Exercise 1 (7 points)

Horizontal elastic pendulum

A mechanical oscillator is formed by a block (S) of mass m and a spring of negligible mass and spring constant k. (S) is attached to one end of the spring, and the other end of the spring is connected to a fixed support A. (S) can move without friction on a horizontal surface (Doc. 1). The aim of this exercise is to determine the values of m and k . At equilibrium, the center of mass G of (S) coincides with the origin O of the x -axis.
(S) is displaced horizontally in the positive direction.
At the instant $\mathrm{t}_{0}=0$, the abscissa of G is x_{0} and (S) is launched in the

negative direction with an initial velocity $\overrightarrow{v_{0}}=v_{0} \dot{i}\left(v_{0}<0\right)$ where \dot{i} is the unit vector of the x-axis.
At an instant t, the abscissa of G is x and the algebraic value of its velocity is $v=x^{\prime}=\frac{d x}{d t}$.
The horizontal plane containing G is taken as a reference level for gravitational potential energy.

1) Write, at an instant t, the expression of the mechanical energy of the system (Oscillator, Earth) in terms of x, m, k and v .
2) Establish the second order differential equation in x that governs the motion of (S).
3) Deduce the expression of the proper angular frequency ω_{0} of the oscillations in terms of m and k .
4) The solution of the obtained differential equation is:
$x=X_{m} \sin \left(\omega_{0} t+\varphi\right)$, where X_{m}, ω_{0} and φ are constants.
Write the expression of v in terms of $\mathrm{X}_{\mathrm{m}}, \omega_{0}, \varphi$ and t .
5) Write the expressions of x_{0} and v_{0} in terms of X_{m}, ω_{0} and φ.
6) Deduce that: $X_{m}=\sqrt{\mathrm{x}_{0}^{2}+\frac{\mathrm{v}_{0}^{2}}{\omega_{0}^{2}}}$.
7) An appropriate device traces x and v as functions of time as shown in documents 2 and 3 respectively.
Referring to documents (2) and (3):
7-1) specify the type of the oscillations;
7-2) indicate the values of x_{0}, v_{0}, X_{m} and V_{m}, where V_{m} is the amplitude of v.
8) Deduce that ω_{0} is approximately equal to $20 \mathrm{rad} / \mathrm{s}$.
9) We repeat the same experiment by replacing the block (S) of mass m by another block (S^{\prime}) of mass $\mathrm{m}^{\prime}=0.8 \mathrm{~kg}$.
The new proper angular frequency is $\omega^{\prime}=\frac{\omega_{0}}{2}$.
9-1) Write the expression of ω^{\prime} in terms of m^{\prime} and k.
9-2) Deduce the values of k and m.

Exercise 2 (7 points) Capacitance of a capacitor

The aim of this exercise is to determine the capacitance C of a capacitor. We set-up the series circuit of document 4 .
This circuit includes:

- an ideal battery of electromotive force $\mathrm{E}=10 \mathrm{~V}$;
- a rheostat of resistance R ;
- a capacitor of capacitance C ;
- an ammeter (A) of negligible resistance;
- a switch K.

Initially the capacitor is uncharged. We close the switch K at the
 instant $t_{0}=0$. At an instant t, plate B of the capacitor carries a charge q and the circuit carries a current i as shown in document 4 .

1) Write the expression of i in terms of C and u_{C}, where $u_{C}=u_{B D}$ is the voltage across the capacitor.
2) Establish the differential equation that governs the variation of u_{C}.
3) The solution of this differential equation is of the form: $u_{C}=a+b e^{\frac{-t}{\tau}}$. Determine the expressions of the constants a, b and τ in terms of E, R and C .
4) Deduce that the expression of the current is: $i=\frac{E}{R} e^{\frac{-t}{R C}}$.
5) The ammeter (A) indicates a value $I_{0}=5 \mathrm{~mA}$ at $\mathrm{t}_{0}=0$. Deduce the value of R.
6) Write the expression of $u_{R}=u_{D N}$ in terms of E, R, C and t.
7) At an instant $t=t_{1}$, the voltage across the capacitor is $u_{C}=u_{R}$.

7-1) Show that $\mathrm{t}_{1}=\mathrm{R} \mathrm{C} \ln 2$.
7-2) Calculate the value of C knowing that $\mathrm{t}_{1}=1.4 \mathrm{~ms}$.
8) In order to verify the value of C, we vary the value of R. Document 5 represents τ as a function of R.

8-1) Show that the shape of the curve in document 5 is in agreement with the expression of τ obtained in part 3.
8-2) Using the curve of document 5 , determine again the value of C .

The aim of this exercise is to show evidence of the two aspects of light.

1) First aspect

Consider Young's double-slit experiment. The two thin parallel horizontal slits S_{1} and S_{2} are separated by a distance $\mathrm{a}=0.5 \mathrm{~mm}$.
The screen (E) is placed parallel to the plane of the slits at a distance $\mathrm{D}=2 \mathrm{~m}$.
A laser source illuminates the two slits by a monochromatic light of wavelength $\lambda=600 \mathrm{~nm}$ in air, under normal incidence.
O is the point of intersection between the perpendicular bisector of $\left[\mathrm{S}_{1} \mathrm{~S}_{2}\right]$ and the screen (E). P is a point on the screen having an abscissa
$\mathrm{x}_{\mathrm{P}}=\overline{\mathrm{OP}}=9.6 \mathrm{~mm}$ (Doc. 6).
1-1) Calculate the inter-fringe distance i.
1-2) Specify the nature and the order of the fringe whose center is point P.
1-3) Slits S_{1} and S_{2} are replaced by a horizontal slit S of width $a_{1}=0.1 \mathrm{~mm}$. O is the center of the central bright fringe and $\alpha=2 \theta_{1}$ where α is the angular width of the central bright fringe (θ_{1} is a small angle) (Doc. 7).
$\mathbf{1 - 3 - 1}$) Name the phenomenon that takes place at the slit S .
1-3-2) Show that the width L of the central
 bright fringe is given by the

$$
\text { expression: } \mathrm{L}=\frac{2 \lambda \mathrm{D}}{\mathrm{a}_{1}}
$$

1-3-3) Deduce the distance d between O and the center of the first dark fringe.
1-3-4) Deduce that P is neither the center of a bright fringe nor the center of a dark fringe.
1-4) The previous two experiments show evidence of an aspect of light. Name this aspect.
2) Second aspect

The monochromatic radiation of wavelength $\lambda=600 \mathrm{~nm}$ in air, emitted by the laser source, illuminates now the surface of a lithium metal of work function $\mathrm{W}_{0}=2.39 \mathrm{eV}$.
Given:
Planck's constant $\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J} . \mathrm{s} ; 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
Take: the speed of light in air $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
2-1) Define the work function (extraction energy) of a metal.
2-2) Calculate, in eV, the energy of a photon in this radiation.
2-3) Deduce that there is no photoelectric emission from the surface of the lithium metal.
2-4) In order to extract electrons from the surface of the lithium metal, the laser source is replaced by another one emitting a radiation of wavelength $\lambda^{\prime}=500 \mathrm{~nm}$ in air. Determine, in eV , the maximum kinetic energy of the liberated electrons.
2-5) This experiment shows evidence of an aspect of light. Name this aspect.

Exercise 1 (7 points)

Horizontal elastic pendulum

	rtie	Answer	Mark
	1	$\mathrm{ME}=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{kx}^{2}$	0.5
	2	There is no friction therefore the mechanical energy is conserved. ME $=$ constant, then $\frac{d M E}{d t}=0$, hence $m v v^{\prime}+\mathrm{kx} \mathrm{x}^{\prime}=0$ with $v=x^{\prime}$ and $v^{\prime}=x^{\prime \prime}$ $\mathrm{x}^{\prime}(\mathrm{mv}+\mathrm{kx})=0$, but $\mathrm{x}^{\prime}=0$ is rejected ; therefore, $\quad \mathrm{x}^{\prime \prime}+\frac{\mathrm{k}}{\mathrm{m}} \mathrm{x}=0$	1
	3	The differential equation is of the form: $x^{\prime \prime}+\omega_{0}^{2} x=0$ then : $\omega_{0}=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$	0.5
	4	$\mathrm{v}=\mathrm{X}_{\mathrm{m}} \omega_{0} \cos \left(\omega_{0} \mathrm{t}+\varphi\right)$	0.5
	5	$\begin{aligned} & \mathrm{x}_{0}=\mathrm{X}_{\mathrm{m}} \sin \varphi \\ & \mathrm{v}_{0}=\omega_{0} \mathrm{X}_{\mathrm{m}} \cos \varphi \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$
	6	$\begin{aligned} & \sin \varphi=\frac{\mathrm{X}_{0}}{\mathrm{X}_{\mathrm{m}}} \quad \text { and } \quad \cos \varphi=\frac{\mathrm{v}_{0}}{\omega_{0} \mathrm{X}_{\mathrm{m}}} \\ & \sin ^{2} \varphi+\cos ^{2} \varphi=1 \\ & \frac{\mathrm{X}_{0}^{2}}{\mathrm{X}_{\mathrm{m}}^{2}}+\frac{\mathrm{v}_{0}^{2}}{\omega_{0}^{2} \mathrm{X}_{\mathrm{m}}^{2}}=1 \quad \text {, so } \quad \mathrm{X}_{\mathrm{m}}^{2}=\mathrm{x}_{0}^{2}+\frac{\mathrm{v}_{0}^{2}}{\omega_{0}^{2}} \quad \text { Therefore, } X_{\mathrm{m}}=\sqrt{\mathrm{x}_{0}^{2}+\frac{\mathrm{v}_{0}^{2}}{\omega_{0}^{2}}} \end{aligned}$	1
	7.1	Free undamped mechanical oscillations	0.25
7	7.2	$\begin{array}{lll} \hline \mathrm{x}_{0}=10 \mathrm{~cm} & ; & \mathrm{V}_{0}=-4.58 \mathrm{~m} / \mathrm{s} \\ \mathrm{X}_{\mathrm{m}}=25 \mathrm{~cm} & ; & \mathrm{V}_{\mathrm{m}}=5 \mathrm{~m} / \mathrm{s} \\ \hline \end{array}$	$\begin{array}{ll} \hline 0.25 & 0.25 \\ 0.25 & 0.25 \\ \hline \end{array}$
	8	Substituting the values of x_{0}, v_{0} and X_{m} into the expression of X_{m} gives : $0.25=\sqrt{0.1^{2}+\frac{-4.58^{2}}{\omega_{0}{ }^{2}}} \quad$, then $\quad \omega_{0}=19.98 \cong 20 \mathrm{rad} / \mathrm{s}$ Or : $\mathrm{V}_{\mathrm{m}}=\omega_{0} \mathrm{X}_{\mathrm{m}}, \quad \text { then } \quad \omega_{0}=\frac{\mathrm{V}_{\mathrm{m}}}{X_{\mathrm{m}}}=\frac{5}{0.25}=20 \mathrm{rad} / \mathrm{s}$	0.5
	9.1	$\omega^{\prime}=\sqrt{\frac{\mathrm{k}}{\mathrm{m}^{\prime}}}$	0.25
9	9.2	$\begin{aligned} & \omega^{\prime}=10 \mathrm{rad} / \mathrm{s} \\ & \mathrm{k}=\mathrm{m}^{\prime} \times \omega^{\prime 2}=0.8 \times 10^{2}=80 \mathrm{~N} / \mathrm{m} \\ & \mathrm{~m}=\frac{\mathrm{k}}{\omega_{0}^{2}}=\frac{80}{400}=0.2 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$

	art	Answer	notes
	1	$\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}} \quad$, but $\mathrm{q}=\mathrm{C} \times \mathrm{u}_{\mathrm{C}} \quad$, then $\quad \mathrm{i}=\mathrm{C} \frac{\mathrm{du}}{\mathrm{C}}$	0.5
	2	$E=u_{A B}+u_{B N}=u_{C}+R i \quad$, but $\quad i=C \frac{d u_{C}}{d t} \quad ;$ therefore, $\quad E=u_{C}+R C \frac{d u_{C}}{d t}$	0.75
	3	$\frac{d u_{C}}{d t}=-\frac{b}{\tau} e^{-\frac{t}{\tau}}$; Substituting u_{C} and $\frac{d u_{C}}{d t}$ in the differential equation gives : $\mathrm{E}=\mathrm{a}+\mathrm{b} e^{-\frac{t}{\tau}}+\mathrm{RC}\left(-\frac{\mathrm{b}}{\tau} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}\right), \text { so } \mathrm{E}=\mathrm{a}+\mathrm{b} e^{-\frac{t}{\tau}}\left(1-\frac{R C}{\tau}\right)$ By comparison we obtain : $\mathrm{a}=\mathrm{E}$ and $\mathrm{b} e^{-\frac{t}{\tau}}\left(1-\frac{R C}{\tau}\right)=0$, but $\mathrm{b} e^{-\frac{t}{\tau}}=0$ is rejected, then $1-\frac{R C}{\tau}=0$ Therefore, $\tau=\mathrm{RC}$ At $\mathrm{t}_{\mathrm{o}}=0$, the charge is $\mathrm{q}_{\mathrm{o}}=0$, then $\mathrm{u}_{\mathrm{C} 0}=0$. Substituting $u_{C 0}=0$ into the expression of u_{C} gives: $0=a+b$, so $b=-a=-E$	2
	4	$\mathrm{i}=\mathrm{C} \frac{\mathrm{du}}{\mathrm{C}}$ dt $=\mathrm{C} \frac{\mathrm{E}}{\mathrm{E}} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}=\frac{E}{R} e^{-\frac{t}{\tau}}$	0.5
	5	A $\mathrm{t}_{0}=0: \mathrm{i}=\mathrm{I}_{0}=\frac{E}{R} e^{0}$, then $\mathrm{I}_{0}=\frac{E}{R} \quad$, thus $\mathrm{R}=\frac{E}{I_{0}}=\frac{10}{5 \times 10^{-3}}=2 \times 10^{3} \Omega$	0.5
	6	$\mathrm{u}_{\mathrm{R}}=\operatorname{Ri}=\operatorname{RC} \frac{\mathrm{du} \mathrm{u}_{\mathrm{C}}}{\mathrm{dt}}=\mathrm{RC} \frac{\mathrm{E}}{\mathrm{\tau}} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}$, then $\mathrm{u}_{\mathrm{R}}=\mathrm{E} e^{-\frac{t}{\tau}}$	0.5
	7.1	$\mathrm{u}_{\mathrm{C}}=\mathrm{u}_{\mathrm{R}}$ $\mathrm{E}-\mathrm{Ee}-\frac{t_{1}}{\tau}=\mathrm{E} e^{-\frac{t_{1}}{\tau}}$, so $\mathrm{E}=2 \mathrm{E} e^{-\frac{t_{1}}{\tau}}$, then $\frac{1}{2}=e^{-\frac{t_{1}}{\tau}}$, hence $-\ln 2=-\frac{t_{1}}{\tau}$ Then, $\mathrm{t}_{1}=\tau \ln 2$; therefore, $\mathrm{t}_{1}=\mathrm{RC} \ln 2$	0.75
	7.2	$\mathrm{C}=\frac{\mathrm{t}_{1}}{\mathrm{R} \ln 2}=\frac{1.4 \times 10^{-3}}{2 \times 10^{3} \times \ln 2}=1 \times 10^{-6} \mathrm{~F}$	0.5
	8.1	The curve is a straight line passing through the origin with a positive slope, then it is in agreement with the expression $\tau=\mathrm{RC}$.	0.5
	8.2	Slope $=\mathrm{C}=\frac{\Delta \tau}{\Delta \mathrm{R}}=\frac{3 \times 10^{-3}}{3 \times 10^{3}}=1 \times 10^{-6} \mathrm{~F}$	0.5

Exercise 3 (6 points) Aspects of Light

Part			Answer	Mark
1.1			$\mathrm{i}=\frac{\lambda \mathrm{D}}{a}=\frac{600 \times 10^{-9} \times 2}{0.5 \times 10^{-3}}=24 \times 10^{-4} \mathrm{~m}=2.4 \mathrm{~mm}$	0.5
1.2			$\mathrm{x}_{\mathrm{P}}=9.6 \mathrm{~mm}=4 \mathrm{i}$, then P is the center of the $4^{\text {th }}$ bright fringe. Or: P is the center of a bright fringe if $X_{P}=\frac{k \lambda D}{a}$ with $k \in Z$. $x_{P}=\frac{k \lambda D}{a}$, then $k=\frac{a x_{P}}{\lambda D}=\frac{0.5 \times 10^{-3} \times 9.6 \times 10^{-3}}{600 \times 10^{-9} \times 2}=4 \in Z$, then P is the center of the $4^{\text {th }}$ bright fringe.	1
	1.3	1.3.1	Diffraction of light	0.25
		1.3.2	From the figure: $\tan \frac{\alpha}{2}=\frac{\mathrm{L} / 2}{\mathrm{D}}$, but α is small then $\tan \alpha \cong \alpha$ So $\frac{\alpha}{2}=\frac{L}{2 D} \quad$ But $\alpha=\frac{2 \lambda}{a_{1}}$; therefore, $L=\frac{2 \lambda D}{a_{1}}$	0.75
		1.3.3	$\mathrm{d}=\frac{\mathrm{L}}{2}=\frac{2 \times 600 \times 10^{-9} \times 2}{2 \times 0.1 \times 10^{-3}}=0.012 \mathrm{~m}=12 \mathrm{~mm}$	0.5
		1.3.4	$x_{P}<d=\frac{L}{2}$, then it is neither the center of a bright nor the center of a dark fringe.	0.25
	1.4		Wave aspect of light	0.25
2	2.1		W_{0} is the minimum energy needed to extract an electron from the surface of a metal.	0.5
	2.2		$\begin{aligned} & \mathrm{E}_{\mathrm{ph}}=\frac{\mathrm{hc}}{\lambda}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{600 \times 10^{-9}}=3.3 \times 10^{-19} \mathrm{~J} \\ & \mathrm{E}_{\mathrm{ph}}=\frac{3.3 \times 10^{-19}}{1.6 \times 10^{-19}}=2.0625 \mathrm{eV} \end{aligned}$	0.75
		2.3	$\mathrm{E}_{\mathrm{ph}}<\mathrm{W}_{\mathrm{o}}$, then there is no photoelectric emission.	0.25
	2.4		$\begin{aligned} & \mathrm{E}_{\mathrm{ph}}^{\prime}=\mathrm{W}_{\mathrm{o}}+\mathrm{KE}_{\max }, \text { then } \mathrm{KE}_{\max }=\mathrm{E}_{\mathrm{ph}}^{\prime}-\mathrm{W}_{\mathrm{o}}=\frac{\mathrm{hc}}{\lambda^{\prime}}-\mathrm{W}_{\mathrm{o}} \\ & \mathrm{KE}_{\max }=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{500 \times 10^{-9} \times 1.6 \times 10^{-19}}-2.39=0.085 \mathrm{eV} \end{aligned}$	0.75
	2.5		Corpuscular (particle) aspect of time	0.25

