دورة العام ٢٠١٩ العادية الاثنين ٢٤ حزيران ٢٠١٩

•••••N1	مسابقة فيمادة البياضيات	and the set of the set
, a way.	المعابقة في المان الرياضيات	
ال قرم	المدقع ساعتان	
الرهم:		
		11 ··· · · · · · · · · · · · · · · · ·

ملاحظة: - يسمح باستعمال الله حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (4 points)

The table below represents the number of passengers (in millions) in an airport, for each year from 2014 to 2018.

Year	2014	2015	2016	2017	2018
Rank of the year: x _i	4	5	6	7	8
Number of passengers (in millions): y _i	15	18	22	24	25

- 1) Represent the scatter plot of points (x_i, y_i) in a rectangular system.
- 2) Calculate the coordinates of the center of gravity $G(\bar{x}, \bar{y})$ and plot G in the preceding system.
- 3) Calculate the correlation coefficient r and give an interpretation of the value thus obtained.
- 4) Determine an equation of the regression line $(D_{y/x})$, of y in terms x, and draw $(D_{y/x})$ in the preceding system.
- 5) Assume that the above model remains valid till the year 2023.
 - a- Estimate the number of passengers in 2021.
 - b- Suppose that the percentage increase in the number of passengers from the year 2018 to a year to be determined is 45.6 %. Determine this year.

II- (4 points)

A cafeteria sells dessert and coffee only.

A customer can buy one dessert, one cup of coffee, both or none.

In this cafeteria:

- 70 % of the customers buy dessert, among which 40 % buy coffee,
- among the customers who do not buy dessert, 35 % do not buy coffee.

One customer of this cafeteria is randomly selected and interviewed.

Consider the following events:

- D: "The interviewed customer buys a dessert",
- C: "The interviewed customer buys a cup of coffee".
- 1) a- Calculate the probabilities $P(C \cap \overline{D})$ and $P(C \cap \overline{D})$.
 - b- Deduce that P(C) = 0.475.
- 2) A customer does not buy a cup of coffee. Calculate the probability that this customer does not buy a dessert.
- 3) In this cafeteria, the price of a dessert is 7 000 LL and the price of a cup of coffee is 3 000 LL. Denote by X the random variable equal to the sum paid by a customer.
 - a- Justify that P(X = 0) = 0.105.
 - b- Determine the probability distribution of X.
 - c- During a certain day, 500 customers entered the cafeteria. Estimate the total revenue during that day.

III- (4 points)

A company produces a certain type of objects.

At the end of January 2018, the monthly total cost was 9 million LL.

At the end of each month, the monthly total cost increases by 21% with additional expenses of 840 000 LL, and so on for the following months.

For all natural numbers n > 0, denote by C_1 the monthly total cost, in millions LL, at the end of January 2018 and by C_n the monthly total cost, in millions LL, at the end of the nth month.

Thus $C_1 = 9$ and $C_{n+1} = 1.21C_n + 0.84$.

- 1) Calculate C₃. Interpret the result obtained.
- 2) Consider the sequence (V_n) defined by $V_n = C_n + 4$.
 - a- Show that (V_n) is a geometric sequence whose common ratio r and first term V_1 are to be determined.
 - b- Show that $C_n = 13 \times (1.21)^{n-1} 4$.
 - c- Show that the sequence (C_n) is strictly increasing.
 - d- After how many months will the monthly total cost exceed 300 million LL for the first time? Justify.
- 3) The monthly revenue in millions LL, at the end of the nth month, for this company is modeled as

 $R_n = 100 \times (1.07)^{n-1}$ for all natural numbers n > 0.

Does the company achieve profit at the end of June 2019? Justify.

IV- (8 points)

Consider the function f defined over $\left[0, +\infty\right]$ as $f(x) = \frac{2}{2 + e^{x-1}}$ and denote by (C) its representative curve

in an orthonormal system $(O; \vec{i}, \vec{j})$.

Part A

- 1) a- Calculate f(0) and f(2) to the nearest 10^{-3} .
 - b- Determine $\lim f(x)$. Deduce an asymptote to (C).
- 2) a- Show that f is strictly decreasing.b- Set up the table of variations of f.
- 3) Consider the function g defined over $[0, +\infty]$ as

$$g(x) = \frac{2e^{x-1}}{2+e^{x-1}}.$$

The representative curve (G) of the function g and its asymptote are given in the adjacent figure. a- Solve the equation f(x) = g(x).

Part B

A factory produces a certain type of objects.

The demand function and the supply function are respectively modeled as

 $f(x) = \frac{2}{2 + e^{x-1}}$ and $g(x) = \frac{2e^{x-1}}{2 + e^{x-1}}$; where x is the unit price expressed in millions LL.

f(x) and g(x) are expressed in thousands of objects with $x \in [0, 5]$.

- 1) Calculate the demanded number of objects for a unit price of 2 million LL.
- 2) Calculate the unit price for a supply of 1000 objects.
- 3) Determine the equilibrium price.
- 4) Denote by E(x) the elasticity of the demand with respect to the unit price x.
 - a- Show that $E(x) = \frac{xe^{x-1}}{2+e^{x-1}}$ and calculate E(2).
 - b- If the unit price of 2 million LL increases by 1 %, then calculate the number of demanded objects.

دورة المعام ٢٠١٩ العاديّة الاثنين ٢٤ حزيران ٢٠١٩

امتحانات الشهادة الثانوية العامة فرع: الاجتماع والاقتصاد

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسمية

أسس تصحيح مسابقة الرياضيات

Q.1	Answers	4pts	
1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
2	$\bar{x} = 6$ and $\bar{y} = 20.8$ then G(6, 20.8). Figure	1	
3	r = 0.977. Strong positive correlation	1	
4	y = bx + a = 2.6x + 5.2 Figure	1.5	
<u>5a</u>	x = 11, $y = 2.6(11) + 5.2 = 33.8$ in millions of passengers. Then 33 800 000 passengers	1	
5b	$\frac{3 - 25}{25} = 0.456 \text{ , } y = 25(0.450) + 25 = 30.4.$ 2.6x + 5.2 = 36.4 gives x = 12. In the year 2022 OR In 2018, y = 25 so y = 25 $\left(\frac{45.6}{100}\right)$ + 25 = 36.4 then 2.6x + 5.2 = 36.4 gives x = 12.		
	In 2018, $y = 25$ so $y = 25(\frac{43.0}{100}) + 25 = 36.4$ then $2.6x + 5.2 = 36.4$ gives $x = 12$. In the year 2022		
Q.II	In 2018, y = 25 so y = $25\left(\frac{43.0}{100}\right) + 25 = 36.4$ then $2.6x + 5.2 = 36.4$ gives x = 12. In the year 2022 Answers	4pts	
Q.II 1a	In 2018, y = 25 so y = $25\left(\frac{43.0}{100}\right) + 25 = 36.4$ then $2.6x + 5.2 = 36.4$ gives x = 12. In the year 2022 Answers $P(C \cap \overline{D}) = P(\overline{D}).P(C/\overline{D}) = 0.4 \times 0.7 = 0.28$ $P(C \cap \overline{D}) = P(\overline{D}).P(C/\overline{D}) = 0.3 \times 0.65 = 0.195$	4pts	
Q.II 1a 1b	In 2018, y = 25 so y = $25\left(\frac{43.0}{100}\right) + 25 = 36.4$ then $2.6x + 5.2 = 36.4$ gives x = 12. In the year 2022 Answers $P(C \cap \overline{D}) = P(\overline{D}).P(C/\overline{D}) = 0.4 \times 0.7 = 0.28$ $P(C \cap \overline{D}) = P(\overline{D}).P(C/\overline{D}) = 0.3 \times 0.65 = 0.195$ $P(C) = P(C \cap D) + P(C \cap \overline{D}) = 0.475$ $0,7$ D $0,6$ \overline{C}	4pts 1 1	
<u>Q.Ш</u> 1а 1b 2	In 2018, y = 25 so y = $25\left(\frac{43.0}{100}\right) + 25 = 36.4$ then $2.6x + 5.2 = 36.4$ gives x = 12. In the year 2022 Answers $P(C \cap D) = P(D).P(C/D) = 0.4 \times 0.7 = 0.28$ $P(C \cap \overline{D}) = P(\overline{D}).P(C/\overline{D}) = 0.3 \times 0.65 = 0.195$ $P(C) = P(C \cap D) + P(C \cap \overline{D}) = 0.475$ $P(\overline{D}/C) = \frac{P(\overline{C} \cap \overline{D})}{P(\overline{C})} = \frac{P(\overline{D}) - P(\overline{D} \cap C)}{1 - 0.475} = \frac{0.3 - 0.195}{0.525} = 0.2$ O,3 \overline{D} O,65 O,65 O,7 O,7 O,65 O,7 O,65 O,7 O,65 O,7 O,7 O,65 O,7 O,7 O,65 O,7 O,7 O,65 O,7 O,7 O,65 O,7 O,7 O,65 O,7 O,7 O,7 O,65 O,7 O,7 O,7 O,65 O,7 O,7 O,7 O,65 O,7 O,7 O,7 O,65 O,7	4pts 1 1 1.5	
Q.II 1a 1b 2 3a	In 2018, y = 25 so y = $25\left(\frac{43.0}{100}\right) + 25 = 36.4$ then $2.6x + 5.2 = 36.4$ gives $x = 12$. In the year 2022 Answers $P(C \cap \overline{D}) = P(\overline{D}).P(C/\overline{D}) = 0.4 \times 0.7 = 0.28$ $P(\overline{C}) = P(\overline{C} \cap \overline{D}) + P(\overline{C} \cap \overline{D}) = 0.3 \times 0.65 = 0.195$ $P(\overline{D}/\overline{C}) = \frac{P(\overline{C} \cap \overline{D})}{P(\overline{C})} = \frac{P(\overline{D}) - P(\overline{D} \cap C)}{1 - 0.475} = \frac{0.3 - 0.195}{0.525} = 0.2$ OR $P(\overline{D}/\overline{C}) = \frac{P(\overline{C} \cap \overline{D})}{P(\overline{C})} = \frac{P(\overline{D}) \times P(\overline{C}/\overline{D})}{1 - P(C)} = \frac{0.3 \times 0.35}{0.525} = 0.2$ $P(X = 0) = P(\overline{C} \cap \overline{D}) = 0.3 \times 0.35 = 0.105$	4pts 1 1 1.5 0.5	
Q.Ш 1а 1b 2 3а 3b	In 2018, y = 25 so y = $25\left(\frac{43.0}{100}\right) + 25 = 36.4$ then $2.6x + 5.2 = 36.4$ gives x = 12. In the year 2022 $P(C \cap \overline{D}) = P(\overline{D}).P(\overline{C}/\overline{D}) = 0.4 \times 0.7 = 0.28$ $P(\overline{C} \cap \overline{D}) = P(\overline{D}).P(\overline{C}/\overline{D}) = 0.3 \times 0.65 = 0.195$ $P(\overline{D}/\overline{C}) = \frac{P(\overline{C} \cap \overline{D})}{P(\overline{C})} = \frac{P(\overline{D}) - P(\overline{D} \cap C)}{1 - 0.475} = \frac{0.3 - 0.195}{0.525} = 0.2$ $P(\overline{D}/\overline{C}) = \frac{P(\overline{C} \cap \overline{D})}{P(\overline{C})} = \frac{P(\overline{D}) \times P(\overline{C}/\overline{D})}{1 - P(C)} = \frac{0.3 \times 0.35}{0.525} = 0.2$ $P(X = 0) = P(\overline{C} \cap \overline{D}) = 0.3 \times 0.35 = 0.105$ The possible values of X are: 0, 3000, 7000, 10 000 $P(X = 0) = 0.105$ $P(X = 3000) = P(C \cap \overline{D}) = 0.195$ $P(X = 10\ 000) = P(C \cap D) = 0.28$	4pts 1 1 1 0.5 2	

Q.III	Answers	4pts	
1	$C_2 = C_1(1.21) + 0.84 = 11.73$ $C_3 = C_2(1.21) + 0.84 = 15.0333$ then the cost at the end of March is 15 033 300 LL		
2-	$V_{n+1} = C_{n+1} + 4 = 1.21(C_n + 4) = 1.21V_n$ then (V_n) is a geometric sequence whose	1	
2a	common ratio $r = 1.21$ and the first term $V_1 = C_1 + 4 = 13$		
2b	$V_n = V_1 \times q^{n-1} = 13 \times (1.21)^{n-1}$ then $C_n = V_n - 4 = 13 \times (1.21)^{n-1} - 4$		
2c	$C_{n+1} - C_n = = 13 \times (1.21)^{n-1} (1.21 - 1) = 2.73 \times (1.21)^{n-1} > 0$ Then (C ₁) is strictly increasing		
2d	$\frac{\ln(C_n) \text{ is strictly increasing}}{C_n > 300 \text{ then } 13 \times (1.21)^{n-1} - 4 > 300 \text{ ; } n-1 > \frac{\ln\left(\frac{304}{13}\right)}{\ln(1.21)} \text{ ; } n > 17.53 \text{ so } n = 18 \text{, then}}{18 \text{ months.}}$		
3	$R_n = 100(1.07)^{n-1}$ then $R_{18} = 100(1.07)^{17} = 315.88$ $C_{18} = 13(1.21)^{17} - 4 = 328.119$ Profit = $R_{18} - C_{18} = -12.239 < 0$ then the company does not achieve a profit	2	
O.IV	$\frac{11011 - K_{18} - C_{18} - 12.233 < 0 \text{ then the company does not demove a profit.}}{\text{Answers}}$	8pts	
Ala	f(0) = 0.845 ; $f(2) = 0.423$	1	
A1b	$\lim_{x \to 0} f(x) = 0 \text{ then } y = 0 \text{ HA}$	1	
A2a	$f'(x) = \frac{-2e^{x-1}}{(e^{x-1}+2)^2} < 0 \text{ then f is strictly decreasing.}$	1	
A2b	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.5	
A3a	$f(x) = g(x)$ then $2 = 2e^{x-1}$ so $x = 1$.	1	
A3b	y = 2 y = 2 (G) (G) (G) (C) (C) (C) (C) (C) (C) (C) (C	2	
B1	f(2) = 0,423 in thousands of objects then 423 objects.		
B2	$g(x) = 1$ then $2e^{x-1} = e^{x-1} + 2$ so $x = 1 + \ln 2 \approx 1.693$ in million LL.		
B 3	f(x) = g(x) then $x = 1$ so 1 000 000 LL.		
B4a	$e(x) = x \frac{f'(x)}{f(x)} = \frac{-xe^{x-1}}{e^{x-1}+2}$ e(2) = -1.15	1.5	
B4b	$f(2) - (0.0115) \times f(2) = 0.423 - (0.0115) \times 0.423 \cong 0.418$ then 418 objects OR $f(2.02) \cong 0.419$ then 419 objects	1.5	