عدد المسائل: اريع
المدة: ساعتان
ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتز ام بترتيب المسائلّ الواردة في المسابقة).

# مسابقة في مادة الرياضيات <br> اللدة: ساعتان <br> (باللغة الإنكليزية) 

Page 2 of 7

## I- (4 points)

In the space referred to a direct orthonormal system $(O ; \vec{i}, \vec{j}, \vec{k})$, given :

- The points $\mathbf{A}(\mathbf{4}, \mathbf{1}, \mathbf{4}), \mathbf{B}(\mathbf{1}, \mathbf{0}, \mathbf{1}), \mathbf{E}(\mathbf{3}, \mathbf{- 1}, \mathbf{1})$
- The plane $(\mathbf{P})$ of equation $\mathbf{x}+2 \mathbf{y}+\mathbf{3 z}-\mathbf{4}=\mathbf{0}$.

1)     - Show that (AE) is perpendicular to plane ( $\mathbf{P}$ ).

- Verify that the point $\mathbf{E}$ is on plane ( $\mathbf{P}$ ).

2) a- Determine an equation of the plane $(\mathrm{Q})$ determined by $A, B$ and $E$.
b- Verify that the two planes $(\mathbf{P})$ and $(\mathbf{Q})$ are perpendicular.
3) Let $(\mathbf{d})$ be the line of intersection of $(\mathbf{P})$ and $(\mathbf{Q})$.

Show that a system of parametric equations of (d) is $\left\{\begin{array}{l}x=-2 t+1 \\ y=t \\ z=1\end{array} \quad(t \in \mathbb{R})\right.$.
4) Consider, in plane $(P)$, the circle $(C)$ with center $E$ and radius $\sqrt{5}$.

Show that the line (d) intersects the circle (C) in two points whose coordinates are to be determined.

## II- (4 points)

$\mathbf{U}$ and $\mathbf{V}$ are two urns such that:

- $\mathbf{U}$ contains three cards holding the numbers $\mathbf{3}, \mathbf{1}$, and $\mathbf{0}$
- $\mathbf{V}$ contains four cards holding the numbers $\mathbf{8}, \mathbf{8}, \mathbf{5}$, and $\mathbf{4}$


One card is selected randomly from urn $\mathbf{U}$ :

- If the selected card from $\mathbf{U}$ holds the number $\mathbf{0}$, then two cards are selected randomly and simultaneously from urn $\mathbf{V}$;
- If the selected card from $\mathbf{U}$ does not hold the number $\mathbf{0}$, then three cards are selected randomly and simultaneously from urn $\mathbf{V}$.

Consider the following events:
A: "The selected card from urn $\mathbf{U}$ holds the number $\mathbf{0}$ "
S: "The sum of the numbers held on the selected cards from urn V is even"

1) a- Verify that $P(S / A)=\frac{1}{2}$
b- Calculate $\mathrm{P}(\mathrm{S} \cap \mathrm{A})$.
c- Verify that $\mathrm{P}(\mathrm{S} \cap \overline{\mathrm{A}})=\frac{1}{6}$
d- calculate $\mathrm{P}(\mathrm{S})$.
2) The sum of the numbers held on the selected cards from urn $\mathbf{V}$ is even.

Calculate the probability that the selected card from urn $\mathbf{U}$ does not hold the number $\mathbf{0}$.
3) Let $\mathbf{X}$ be the random variable equal to the product of numbers held by the cards selected from the two urns $\mathbf{U}$ and $\mathbf{V}$.
a- Calculate $\mathrm{P}(\mathrm{X}=0)$.
b- Deduce $\mathrm{P}(\mathrm{X} \leq 160)$.

## III- (4 points)

In the complex plane referred to a direct orthonormal system $(O ; \overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}})$, consider the points $\mathbf{M}$ and $\mathbf{M}^{\prime}$ with respective affixes $z$ and $\mathbf{z}^{\prime}$ such that $\mathbf{z}^{\prime}=(\mathbf{1}+\mathbf{i}) \overline{\mathbf{z}}$.

1) In this part, let $\mathbf{z}=e^{i \frac{\pi}{3}}$.
a-Write $\mathbf{z}^{\prime}$ in exponential form.
b-Verify that $\left(z^{\prime}\right)^{6}$ is pure imaginary.
2) a- Show that $\left|z^{\prime}\right|=\sqrt{2}|z|$.
b- Deduce that, when $\mathbf{M}$ moves on the circle with center $\mathbf{O}$ and radius $\sqrt{2}, \mathbf{M}^{\prime}$ moves on a circle whose center and radius are to be determined.
3) Let $\mathbf{z}=\mathbf{x}+\mathbf{i y}$ and $\mathbf{z}^{\prime}=\mathbf{x}^{\prime}+\mathbf{i} \mathbf{y}^{\prime}$, where $\mathbf{x}, \mathbf{y}, \mathbf{x}^{\prime}$ and $\mathbf{y}^{\prime}$ are real numbers.
a- Verify that $\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{y}$ et que $\mathbf{y}^{\prime}=\mathbf{x}-\mathbf{y}$.
$\mathbf{b}$-For all $\mathbf{z} \neq \mathbf{0}$, denote by $\mathbf{N}$ the point with affix $\overline{\mathbf{z}}$. Prove that the triangle $\mathrm{ONM}^{\prime}$ is right isosceles with principal vertex $\mathbf{N}$.

IV- (8 points)
Consider the function f defined over $] 0 ;+\infty[$ as $\mathbf{f}(\mathbf{x})=\mathbf{2 x}(\mathbf{1}-\ln \mathbf{x})$. Denote by $(\mathrm{C})$ be its representative curve in an orthonormal system $(\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}})$.

1) Determine $\lim _{\substack{x \rightarrow 0 \\ x>0}} f(x)$ and $\lim _{x \rightarrow+\infty} f(x)$.
2) $\mathbf{a}$ - Let $\mathbf{A}$ be the point of intersection of (C) and the x -axis.

Determine the coordinates of $\mathbf{A}$.
b- Show that $f^{\prime}(x)=-2 \ln x$
c- Set up the table of variations of $f$.
d- Determine an equation of the tangent (T) to (C) at $\mathbf{A}$.

## In the adjacent figure:

- (C) is the representative curve of $\mathbf{f}$.
- (T) is the tangent to $(\mathbf{C})$ at $\mathbf{A}$.
- (d) is the line of equation $x=1$
- $\mathbf{B}(\mathbf{1}, \mathbf{2 e}-\mathbf{2})$ is the point of intersection of
(d) and (T).


3) a- Show that the function f has on $] 1 ;+\infty[$ an inverse function $\mathbf{g}$.
b- Determine the domain of definition of $g$
c- Set up the table of variation of $\mathbf{g}$.
Denote by ( $\mathrm{C}^{\prime}$ ) its representative curve in the same system.
d- Copy $(C)$, then draw $\left(C^{\prime}\right)$ in the same system.
4) Denote by (d) the line with equation $X=1$ and by $B(1,2 e-2)$ the point of intersection of (d) and (T).
a- Using integration by parts, verify that $\int x \ln (x) d x=\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}+c$
b-Deduce that $\int_{1}^{e} f(x) d x=\frac{e^{2}-3}{2}$.
c- Calculate the area of the shaded region bounded by the curve (C), the tangent (T) and the line (d).
