	المدة، ساعتان	
	مسابقة في مادة الرياضيات	عدد المسائل، اربع
مكيفة		دائرة الامتحانات الرسمية
الثلاثاء ١٨ حزيران ٢٠١٩	فرع: علوم الحياة	المديريّـة العامة للتربية
دورة المعام ٢٠١٩ المعاديّة	امتحانات الشهادة الثانوية العامة	وزارة التربية والتعليم العالي

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

مسابقة في مادة الرياضيات المدة: ساعتان (باللغة الإنكليزية)

الإسم:

الرقم:

I- (4 points)

In the space referred to a direct orthonormal system $(O; \vec{i}, \vec{j}, \vec{k})$, given :

- The points A(4, 1, 4), B(1, 0, 1), E(3, -1, 1)
- The plane (P) of equation x + 2y + 3z 4 = 0.
- 1) Show that (AE) is perpendicular to plane (P).
 - Verify that the point **E** is on plane (**P**).
- 2) a- Determine an equation of the plane (Q) determined by A, B and E.

b- Verify that the two planes (**P**) and (**Q**) are perpendicular.

3) Let (d) be the line of intersection of (P) and (Q).

Show that a system of parametric equations of (d) is $\begin{cases} x = -2t + 1 \\ y = t \\ z = 1 \end{cases}$ (t $\in \mathbb{R}$).

4) Consider, in plane (P), the circle (C) with center E and radius √5.
Show that the line (d) intersects the circle (C) in two points whose coordinates are to be determined.

II- (4 points)

U and V are two urns such that:

- U contains three cards holding the numbers **3**, **1**, and **0**
- V contains four cards holding the numbers 8, 8, 5, and 4

One card is selected randomly from urn U:

- If the selected card from U holds the number 0, then two cards are selected randomly and simultaneously from urn V;
- If the selected card from U does not hold the number 0, then three cards are selected randomly and simultaneously from urn V.

Consider the following events:

A: "The selected card from urn U holds the number 0"

S: "The sum of the numbers held on the selected cards from urn V is even"

1) a- Verify that
$$P(S / A) = \frac{1}{2}$$

b- Calculate $P(S \cap A)$.

c- Verify that
$$P(S \cap \overline{A}) = \frac{1}{6}$$

d- calculate P(S).

2) The sum of the numbers held on the selected cards from urn V is even.

Calculate the probability that the selected card from urn U does not hold the number 0.

3) Let X be the random variable equal to the <u>product of numbers held by the cards</u> selected from the two urns U and V.

a- Calculate
$$P(X = 0)$$
.

b- Deduce $P(X \le 160)$.

III- (4 points)

In the complex plane referred to a direct orthonormal system $(O; \vec{u}, \vec{v})$, consider the points **M** and **M'** with respective affixes z and z' such that $z' = (1 + i) \overline{z}$.

- **1**) In this part, let $\mathbf{z} = e^{i\frac{\pi}{3}}$.
 - **a-Write z'** in exponential form.
 - **b-Verify that** $(z')^6$ is pure imaginary.
- 2) a- Show that $|z'| = \sqrt{2} |z|$.
 - **b Deduce that**, when **M** moves on the circle with center **O** and radius $\sqrt{2}$, **M'** moves on a circle whose center and radius are to be determined.
- 3) Let z = x + iy and z' = x' + iy', where x, y, x' and y' are real numbers.
 - **a-Verify that** $\mathbf{x'} = \mathbf{x} + \mathbf{y}$ et que $\mathbf{y'} = \mathbf{x} \mathbf{y}$.
 - **b**-For all $z \neq 0$, denote by N the point with affix \overline{z} . **Prove that** the triangle ONM' is right isosceles with principal vertex N.

IV- (8 points)

Consider the function f **defined** over $]0;+\infty[$ as $\mathbf{f}(\mathbf{x}) = 2\mathbf{x}(1 - \ln \mathbf{x})$. Denote by (C) be its representative curve in an orthonormal system $(\mathbf{O}; \vec{\mathbf{i}}, \vec{\mathbf{j}})$.

1) Determine
$$\lim_{\substack{x\to 0\\x>0}} f(x)$$
 and $\lim_{x\to+\infty} f(x)$.

2) a- Let A be the point of intersection of (C) and the x-axis.

Determine the coordinates of A.

- **b- Show that** $f'(x) = -2\ln x$
- **c- Set up** the table of variations of f.
- **d Determine** an equation of the tangent (T) to (C) at **A**.

In the adjacent figure:

- (C) is the representative curve of **f**.
- (T) is the tangent to (C) at A.
- (d) is the line of equation x = 1
- **B**(1, 2e -2) is the point of intersection of
 - (**d**) and (**T**).

- 3) a- Show that the function f has on $]1; +\infty[$ an inverse function g.
 - **b Determine** the domain of definition of g
 - **c-** Set up the table of variation of **g**.

Denote by (C') its representative curve in the same system.

- **d-Copy** (C), then **draw** (C') in the same system.
- 4) Denote by (d) the line with equation x = 1 and by B(1, 2e − 2) the point of intersection of (d) and (T).

a-Using integration by parts, verify that $\int x \ln(x) dx = \frac{x^2}{2} \ln x - \frac{x^2}{4} + c$

b-Deduce that
$$\int_{1}^{e} f(x) dx = \frac{e^2 - 3}{2}$$
.

c- Calculate the area of the shaded region bounded by the curve (C), the tangent (T) and the line (d).