

مكيّةة

فرع الاجتمـاع والاقتصاد

وزارة التربية والتعليم العالّي
المديريّة العامّة للتربية
دائرة الامتحاناتات الرسميّة

ملاحظة: - يسمح باستعمال آلة حاسبة غبر قابلة للبرمجة او اختز ان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بنرتيب المسائل الواردة في المسابقة).

# مسابقة في مـدة الرياضيات 

## المدة: ساعتان

## باللفة الإنكليزيّة

## I- (4 points)

The table below represents the number of passengers , in millions, in an airport, for each year from year 2014 to year 2018.

| Year | $\mathbf{2 0 1 4}$ | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 1 7}$ | $\mathbf{2 0 1 8}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Rank of the year: $\mathbf{x}_{\mathbf{i}}$ | 4 | 5 | 6 | 7 | 8 |
| Number of passengers (in <br> millions): $\mathbf{y}_{\mathbf{i}}$ | 15 | 18 | 22 | 24 | 25 |

1) Represent the scatter plot of points ( $\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$ ) in a rectangular system.
2)- Calculate the coordinates of the center of gravity $G(\bar{x}, \bar{y})$.

- Plot $G$ in the preceding system.
3)- Calculate the correlation coefficient $r$.
- Give an interpretation of the value thus obtained.

4)     - Determine an equation of the regression line $\left(D_{y / x}\right)$, of $y$ in terms $x$.

- Draw $\left(\mathrm{D}_{\mathrm{y} / \mathrm{x}}\right)$ in the preceding system.

5) Assume that the above model remains valid till the year 2023.
a-Estimate the number of passengers in 2021.
b-Estimate the percentage increase in the number of passengers from the year 2018 till the year 2022.

## II- (4 points)

A cafeteria sells dessert and coffee only.
A customer can buy one dessert, one cup of coffee, both or none.
In this cafeteria:

- 70 \% of the customers buy dessert, among which $\mathbf{4 0} \%$ buy coffee,
- Among the customers who do not buy dessert, 35 \% do not buy coffee.

One customer of this cafeteria is randomly selected and interviewed.
Consider the following events:
D: "The interviewed customer buys a dessert",
C: "The interviewed customer buys a cup of coffee".

1) a- Calculate the probabilities $\mathrm{P}(\mathrm{C} \cap \mathrm{D})$ and $\mathrm{P}(\mathrm{C} \cap \overline{\mathrm{D}})$.
b- Deduce that $\mathrm{P}(\mathrm{C})=0.475$.
2) A customer does not buy a cup of coffee.

Calculate the probability that this customer does not buy a dessert.
3)In this cafeteria:

- the price of a dessert is 7000 LL .
- the price of a cup of coffee is 3000 LL .

Denote by $X$ the random variable equal to the sum paid by a customer.
a-Verify that the four possible values of $X$ are :
$0 ; 3000 ; 7000 ; 10000$.
b-Justify that $\mathrm{P}(\mathrm{X}=0)=0.105$.
c-Determine the probability distribution of X .
d-During a certain day, 500 customers entered the cafeteria.
Estimate the total revenue during that day.

## III- (4 points)

A company produces a certain type of objects.
At the end of January 2018, the monthly total cost was 9 million LL.
At the end of each month, and during the following months,
The monthly total cost receives:

- an increase of $\mathbf{2 1 \%}$
- a fixed sum of $\mathbf{8 4 0} 000 \mathbf{L L}$

For all natural numbers $\mathrm{n}>0$, denote by:

- $C_{1}$ the monthly total cost, in millions LL, at the end of January 2018
- $C_{n}$ the monthly total cost, in millions LL, at the end of the nth month.

Thus $\mathrm{C}_{1}=9$ and $\mathrm{C}_{\mathrm{n}+1}=1.21 \mathrm{C}_{\mathrm{n}}+0.84$.

1)     - Calculate $\mathrm{C}_{3}$.

- What is the monthly total cost at the end of March 2018 ?

2) Consider the sequence $\left(\mathbf{V}_{\mathbf{n}}\right)$ defined by $\mathrm{V}_{\mathrm{n}}=\mathrm{C}_{\mathrm{n}}+4$.
a-Show that $\left(\mathrm{V}_{\underline{n}}\right)$ is a geometric sequence of common ratio $\mathrm{r}=1.21$.

- Determine the first term $V_{1}$ of this sequence.
b-Show that $C_{n}=13 \times(1.21)^{n-1}-4$.
c - Calculate $\mathrm{C}_{\mathrm{n}+1}-\mathrm{C}_{\mathrm{n}}$ in terms of n .
- Deduce that the sequence $\left(\mathrm{C}_{\mathrm{n}}\right)$ is strictly increasing.
d- Calculate $n$ so that $\mathrm{C}_{\mathrm{n}}>300$.
3)The monthly revenue in millions LL, at the end of the nth month, for this company is modeled as $R_{n}=100 \times(1.07)^{n-1}$ for all natural numbers $n>0$.
- Express the profit $\mathrm{P}_{\mathrm{n}}$ in terms of n .
- Does the company achieve profit at the end of June 2019?


## IV- (8 points)

Consider the function $f$ defined over $\left[0,+\infty\left[\right.\right.$ as $f(x)=\frac{2}{2+e^{x-1}}$ and denote by (C) its representative curve in an orthonormal system $(O ; \vec{i}, \vec{j})$.

## Part A

1) a- Calculate $f(0)$ and $f(2)$ to the nearest $10^{-3}$.
2) Determine $\lim _{x \rightarrow+\infty} f(x)$.

- Deduce an asymptote to (C).

3) a- Calculate f '(x).

- Show that f is strictly decreasing.
b- Set up the table of variations of f .

4) Consider the function $g$ defined over $\left[0,+\infty\left[\right.\right.$ as $g(x)=\frac{2 e^{x-1}}{2+e^{x-1}}$.

The representative curve ( G ) of the function g and its asymptote are given in the figure below.

a-Solve the equation $f(x)=g(x)$. b-Copy (G).

- Draw (C) in the same system.


## Part B

A factory produces a certain type of objects.
The demand function is modeled as:

$$
\mathrm{f}(\mathrm{x})=\frac{2}{2+\mathrm{e}^{\mathrm{x}-1}} \text { and expressed in thousands of objects. }
$$

The supply function is modeled as:

$$
g(x)=\frac{2 e^{x-1}}{2+e^{x-1}} \text { and expressed in thousands of objects. }
$$

$\mathbf{x}$ is the unit price expressed in millions LL with $\mathrm{x} \in] 0,5]$.

1) Calculate the demanded number of objects for a unit price of 2 million LL.
2) Calculate the unit price for a supply of 1000 objects.
3)Determine the equilibrium price.
4)Denote by $E(x)$ the elasticity of the demand with respect to the unit price $x$.
a-Show that $E(x)=\frac{x^{x-1}}{2+e^{x-1}}$. b-Calculate $\mathrm{E}(2)$.
c-If the unit price of 2 million LL increases by $1 \%$, then calculate the number of demanded objects.
