عدد المسائل: أربع

مسابقة في مادة الرياضيات المدة: ساعتان

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

مسابقة في مادة الرياضيات المدة: ساعتان باللغة الإنكليزيّة

الاسم :

الرقم :

I- (4 points)

The table below represents the number of passengers , **in millions**, in an airport, for each year from **year 2014** to **year 2018**.

Year	2014	2015	2016	2017	2018
Rank of the year: x _i	4	5	6	7	8
Number of passengers (in	15	18	22	24	25
millions): y _i					

- 1)**Represent** the scatter plot of points (x_i, y_i) in a rectangular system.
- 2) Calculate the coordinates of the center of gravity $G(\overline{x}, \overline{y})$.
 - **Plot** G in the preceding system.
- 3) Calculate the correlation coefficient r.
 - Give <u>an interpretation</u> of the value thus obtained.
- 4) Determine an equation of the regression line $(D_{y/x})$, of y in terms x.
 - **Draw** $(D_{y/x})$ in the preceding system.
- 5)Assume that the above model remains valid till the year 2023.
 - a-Estimate the number of passengers in 2021.
 - b-Estimate the percentage increase in the number of passengers from the

year 2018 till the year 2022.

II- (4 points)

A cafeteria sells dessert and coffee only.

A customer can buy **one dessert**, **one cup of coffee**, **both** or **none**.

In this cafeteria:

- 70 % of the customers buy dessert, among which 40 % buy coffee,
- Among the customers who do not buy dessert, 35 % do not buy coffee.

One customer of this cafeteria is randomly selected and interviewed.

Consider the following events:

D: "The interviewed customer buys a dessert",

C: "The interviewed customer buys a cup of coffee".

1)a- **Calculate** the probabilities $P(C \cap D)$ and $P(C \cap \overline{D})$.

b- **Deduce** that P(C) = 0.475.

2)A customer does not buy a cup of coffee.

Calculate the probability that this customer does not buy a dessert.

3)In this cafeteria:

- the price of a dessert is 7000 LL.
- the price of a cup of coffee is 3000 LL.

Denote by **X** the random variable equal to the sum paid by a customer.

a-Verify that the four possible values of X are :

0;3000;7000;10000.

- b-**Justify that** P(X = 0) = 0.105.
- c-**Determine** the probability distribution of X.
- d-During a certain day, 500 customers entered the cafeteria.

Estimate the total revenue during that day.

III- (4 points)

A company produces a certain type of objects.

At the end of January 2018, the monthly total cost was 9 million LL.

At the end of each month, and during the following months,

The monthly total cost receives:

- an increase of 21%
- a fixed sum of 840 000 LL

For all natural numbers n > 0, denote by:

- C₁ the monthly total cost, in millions LL, at the end of January 2018

- C_n the monthly total cost, in millions LL, at the end of the nth month. Thus $C_1 = 9$ and $C_{n+1} = 1.21C_n + 0.84$.

1) - Calculate C₃.

- What is the monthly total cost at the end of March 2018?

2)Consider the sequence (V_n) defined by $V_n = C_n + 4$.

- a-Show that (V_n) is a geometric sequence of common ratio r = 1.21.
 - **Determine** the first term V_1 of this sequence.

b-Show that $C_n = 13 \times (1.21)^{n-1} - 4$.

- c-Calculate $C_{n+1} C_n$ in terms of n.
 - **Deduce that** the sequence (C_n) is strictly increasing.
- d- Calculate n so that $C_n > 300$.
- 3)The monthly revenue in millions LL, at the end of the nth month, for this company is modeled as $R_n = 100 \times (1.07)^{n-1}$ for all natural numbers n > 0.
 - **Express the profit** P_n in terms of n.
 - Does the company achieve **profit** at the end of June 2019?

IV- (8 points)

Consider the function f defined over $[0, +\infty]$ as $f(x) = \frac{2}{2 + e^{x-1}}$ and denote by (C) its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$.

Part A

- 1)a- **Calculate** f(0) and f(2) to the nearest 10^{-3} .
- 2) **Determine** $\lim_{x\to+\infty} f(x)$.
 - **Deduce** an asymptote to (C).
- 3) a- **Calculate** f '(x).
 - Show that f is strictly decreasing.
 - b- Set up the table of variations of f.

4)Consider the function g defined over $[0, +\infty]$ as $g(x) = \frac{2e^{x-1}}{2+e^{x-1}}$.

The representative curve (G) of the function g and its asymptote are given in the figure below.

a-**Solve** the equation f(x) = g(x).

b-Copy (G).

- **Draw** (C) in the same system.

Part B

A factory produces a certain type of objects.

The demand function is modeled as:

$$f(x) = \frac{2}{2 + e^{x-1}}$$
 and expressed in thousands of objects.

The supply function is modeled as:

$$g(x) = \frac{2e^{x-1}}{2+e^{x-1}}$$
 and expressed in thousands of objects.

x is the unit price expressed in millions LL with $x \in [0, 5]$.

1) Calculate the <u>demanded number of objects</u> for a unit price of 2 million LL.

- 2) Calculate the <u>unit price</u> for a supply of 1000 objects.
- 3) **Determine** the <u>equilibrium price</u>.

4)Denote by E(x) the elasticity of the demand with respect to the unit price x.

a-Show that
$$E(x) = \frac{xe^{x-1}}{2+e^{x-1}}$$

b-Calculate E(2).

c-If the unit price of 2 million LL increases by 1 %,

then calculate the <u>number of demanded objects</u>.