المادة: الفيزياء – لغة إنكليزية الشهادة: المتوسطة نموذج رقم 1 / 2019 المدة: ساعة واحدة

الهيئة الأكاديمية المشتركة قسم: العلوم

This test includes four mandatory exercises in two pages.

The use of non-programmable calculators is allowed.

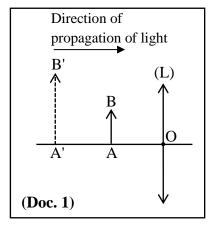
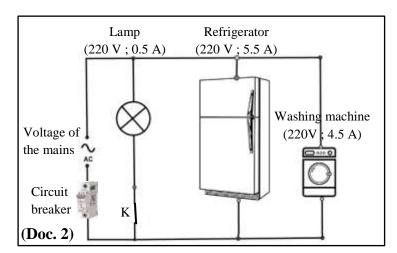

Exercise 1 (5 points)

Image given by a converging lens

The document (Doc. 1) represents an object AB and its image A'B' given by a converging lens (L).

Answer by true or false with justification.

- 1) The lens (L) has thin edges.
- 2) The image A'B', given by (L), is virtual.
- **3**) The focal length of (L) is negative.
- 4) The points B', B and O are always collinear.
- 5) The lens (L) acts, in this case, as a magnifier.

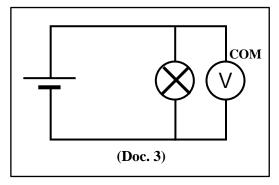

Exercise 2 (5 points)

Electric installation of a kitchen

The electric installation of a kitchen, represented in (Doc. 2), is fed by an alternating sinusoidal voltage, of effective value U = 220 V.

This installation contains the following electric devices:

- A lamp;
- A refrigerator;
- A washing machine.
- 1) All the electric devices function normally. Justify.

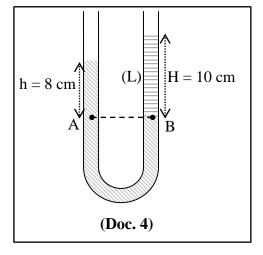


- 2) All the devices are functioning normally at the same time. Specify, among the circuit breakers marked 10 A, 15 A and 30 A, the one that is the most convenient to protect this installation.
- 3) At the end of 24 hours, the refrigerator, of power 990 W, consumes an electric energy of 9.9 kWh. Specify whether the compressor of this refrigerator is working permanently.

Exercise 3 (4 points) Electric circuit

In a lab session, a lamp, considered as a resistor of resistance $R=450~\Omega$, is connected in parallel across the terminals of a generator as shown in (Doc. 3). A voltmeter, connected to the terminals of the lamp, reads U=-9~V.

- 1) Specify whether the voltmeter is used in DC mode or in AC mode.
- 2) How can one modify the voltmeter connections to obtain a positive reading?
- 3) Calculate the electric current carried by the lamp.
- 4) Redraw the diagram of the electric circuit represented in (Doc. 3), and insert an ammeter to measure the electric current carried by the lamp.



Exercise 4 (6 points) Determination of the density of a liquid

To determine the density ρ of a liquid (L) immiscible with water, we pour a certain quantity of this liquid in one branch of a U shaped tube containing water as represented in (Doc. 4). The two sides of the tube are opened to the atmospheric pressure P_{atm} . At equilibrium, the height of the liquid is H=10 cm and that of the water above the surface of separation of the two liquids is h=8 cm.

Given:

- Density of water: $\rho_{water} = 1000 \text{ kg/m}^3$;
- g = 10 N/kg.
- 1) Determine, in terms of ρ , the pressure due to the liquid (L) at point B.
- 2) Calculate the pressure due to the water at point A.
- 3) The pressures at A and B are equal. Justify.
- 4) Deduce the value of ρ .

المادة: الفيزياء – لغة إنكليزية الشهادة: المتوسطة نموذج رقم 1 / 2019 المدة: ساعة واحدة

الهيئة الأكاديمية المشتركة قسم: العلوم

أسس التصحيح

Exercise 1 (5 points) Image given by a converging lens

Question	Answer	Mark
1	True. The lens represented has thin edges because it is a converging lens.	1
2	True. The obtained image is virtual because it is on the same side as that of	
	the object.	1
3	False. The focal length of a converging lens is always positive. (f = $\overline{OF'} > 0$).	1
4	True. The ray issued from the point object B and passing through the optical	
	center O of (L) continues its path as if it was coming from the point image B'.	1
5	True. The lens acts as a magnifier since the obtained image is virtual, erect	
	and of size larger than that of the object.	1

Exercise 2 (5 points) Electric installation of a kitchen

Question	Answer	Mark
1	All the electric devices function normally since they are connected in parallel across the mains and thus fed by an alternating sinusoidal voltage of effective	
	value 220 V.	1
2	The main current is written as: $I = I_1 + I_2 + I_3 = 0.5 + 5.5 + 4.5 = 10.5 \text{ A}.$	1
	The most convenient circuit breaker should be marked 15 A, because the current	
	15 A is larger than the maximum current carried by the circuit when all the	
	devices function normally, and it's the nearest value to it.	1
3	The power of the refrigerator is: $P = 990 \text{ W} = 0.99 \text{ kW}$.	
	If the compressor functions permanently for $\Delta t = 24$ hours, it consumes the	
	energy:	
	$E = P \times \Delta t = 0.99 \times 24 = 23.76 \text{ kWh}$	1
	This value is larger than the consumed energy which is 9.9 kWh, then we	
	conclude that the compressor didn't function during the 24 hours.	1

Exercise 3 (4 points) Electric circuit

Question	Answer	Mark
1	The voltmeter is used in the DC mode since the symbol is that of a constant voltage generator.	1
2	To obtain a positive reading on the screen of the voltmeter, we reverse the connecting wires.	1
3	Ohm's law, $U = RI$, then $I = U/R = 9/450 = 0.02 A$	1
4	A V	1

Exercise 4 (6 points) Determination of the density of a liquid

	(· r · · · · · · · · · · · · · · · · ·	
Question	Answer	Mark
1	The pressure due to the liquid of height H at point B:	11/2
	$P_{B(liquid)} = \rho \times g \times H = \rho \times 10 \times 0.1 = \rho$	
2	The pressure due to the water of height h at point A:	11/2
	$P_{A(water)} = \rho_{water} \times g \times h = 1000 \times 10 \times 0.08 = 800 \text{ Pa}.$	
3	$P_A = P_B$ since A and B are at the same horizontal level and in the same liquid at	11/2
	rest.	
4	The total pressure at A being equal to that at B, we may write: $P_A = P_B$	11/2
	$P_{atm} + 800 = P_{atm} + \rho$; then $\rho = 800 \text{ kg/m}^3$.	