| المادة: رياضيات - لغة إنكليزية الشهادة: المتوسطة نموذج رقم: 2 /2019 المدّة: ساعتان | الهيئة الأكاديميّة المشنتركت | المركز التربوي للبحوث والإنماء |
| :---: | :---: | :---: | يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالثنز ام بترتيب المسائل الواردة في اليا المسابقة).

I- (3 points)

In the following table, only one answer to each question is correct. Write the number of each question then choose, with justification, its corresponding answer.

$\mathbf{N}^{\mathbf{0}}$	Questions	Answers		
		A	B	C
1)	If $\mathrm{a}=3 \sqrt{3}+2 \sqrt{7}$ then $\frac{1}{\mathrm{a}}=$	$2 \sqrt{7}-3 \sqrt{3}$	$3 \sqrt{3}-2 \sqrt{7}$	$-3 \sqrt{3}-2 \sqrt{7}$
2)	x and y are two real numbers such that $\mathrm{x}>\mathrm{y}>0$. If $B=\frac{\sqrt{x+y}}{\sqrt{x}} \times \frac{\sqrt{x^{2}-x y}}{\sqrt{x^{2}-y^{2}}}$ then the simplest form of B is:	$y \sqrt{x}$	$x \sqrt{y}$	1
3)	The two positive numbers a and b represent the length and width of the rectangle whose length of the diagonal is equal to 5 . If the area of the rectangle is 12 , then $(a+b)^{2}=$	5	25	49
4)	In a class, there are 15 boys and 10 girls. 40% of boys and 20% of girls participate in an activity. The percentage of students participating in this activity is:	60\%	50\%	32\%

II- (3 points)

Given $A(x)=\frac{x^{2}}{9}-\frac{2 x}{3}+1-(3-x)^{2}$.

1) Develop $\left(\frac{x}{3}-1\right)^{2}$ and show that $A(x)=\frac{-8(x-3)^{2}}{9}$
2) Let $F(x)=\frac{A(x)}{\frac{x^{2}}{9}-1}$
a. For what values of x , the expression $\mathrm{F}(\mathrm{x})$ is not defined?
b. Simplify F(x).

III- (3 points)

Jad and Mazen bought telephones type A and type B.
The table below shows the total amount in LL paid by each of them.

	Number of telephones type A	Number of telephones type B	Total amount paid in LL
Jad	3	2	3000000
Mazen	2	3	3250000

1) Verify that the price of a telephone type A is 500000 LL and that type B is 750000 LL.
2) During the month of sales, the price of type A is reduced by 20%, and type B is reduced by 30%. Lynne bought 7 telephones and paid 3300000 LL.
Calculate the number of each type of telephone bought by Lynne.

IV- (5.5 points)

In an orthonormal system of axes $x^{\prime} O x$ and $y^{\prime} O y$, consider the points $A(-2 ; 0), B(0 ; 4)$ and the line
(D) with the equation $\mathrm{y}=-\frac{4}{3} \mathrm{x}+4$.

The line (D) intersects the $\mathrm{x}^{\prime} \mathrm{Ox}$ at a point C .

1) a. Calculate the coordinates of the point C.
b. Verify, by calculation, that B is a point on (D).
2) Let H be the orthogonal projection of C on (AB).
a. Show that the triangle ABC is isosceles with vertex C .
b. Verify that the coordinates of point H are $(-1 ; 2)$.
3) (CH) intersects $y^{\prime} \mathrm{Oy}$ at a point L .
a. Write an equation of the line (CH).
b. Calculate the coordinates of point L .
4)

a. Show that the two triangles OLC and CBH are similar and write their ratio of similarity.
b. Deduce the length of the segment [CL].
5) Calculate $\tan O \widehat{C} L$, deduce the measure rounded to the nearest degree, of the angle $A \widehat{B} C$.

V- (5.5 points)

In the adjacent figure, we have:

- (C) is the circle of center O and radius 4
- [AB] is a diameter of (C)
- (T) is the tangent to (C) at A
- $\quad \mathrm{D}$ is a point of (T) such that $\mathrm{AD}=6$
- (T^{\prime}) is the tangent to (C) at B
- E is a point of (T^{\prime}) such that $B E=2$
- [DE] intersects [AB] in F.

1) Draw the figure.
2) Show that $\frac{F B}{F A}=\frac{1}{3}$.
3) Verify that $\mathrm{FB}=2$.
4) Show that $\mathrm{A} \widehat{\mathrm{F} D}=45^{\circ}$.
5) Let H be a point on the line (T^{\prime}) such that OBH is a right
 isosceles triangle.
The two segments $[\mathrm{OH}]$ and $[\mathrm{DF}]$ intersect at a point I .
Show that OÎF $=90^{\circ}$.
6) a. Show that the four points O, I, B and E belong to the same circle (C^{\prime}) and determine a diameter of (C^{\prime}).
b. Calculate the radius of (C^{\prime}).
7) Let M be the symmetric of B with respect to H.
a. Verify that $\mathrm{OM}=4 \sqrt{5}$.
b. Show that the line (OM) is tangent to the circle (C^{\prime}).

	المادة: رياضيات ـ لغة إنكليزية الثههادة: المتوسطة نموذج رقم: 2 / 2019 المدّة: ساعتان	الهيئة الأكاديميّة المشتركة قسم: الرياضيات	المركز التربوي للبحوث والإنماء	
أسس التصحيح				
	Question I			Note
1	$\frac{1}{(3 \sqrt{3}+2 \sqrt{7})}=2 \sqrt{7}-3 \sqrt{3}$ the answer is (A).			0.75
2	$\frac{\sqrt{x+y}}{\sqrt{x}} \times \frac{\sqrt{x(x-y)}}{\sqrt{(x-y)(x+y)}}=\frac{\sqrt{x+y}}{\sqrt{x}} \times \frac{\sqrt{x}}{\sqrt{x+y}}=1$ the answer is (C).			0.75
3	$(\mathrm{a}+\mathrm{b})^{2}=\mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2}=5^{2}+2(12)=25+24=49$ the answer is (C).			0.75
4	$\frac{8}{25}=32 \%$ the answer is (C).			0.75
Question II				
1	$\begin{aligned} & \left(\frac{x}{3}-1\right)^{2}=\frac{x^{2}}{9}-\frac{2}{3} x+1 \\ & \mathrm{~A}(\mathrm{x})=\left(\frac{\mathrm{x}}{3}-1\right)^{2}-(3-\mathrm{x})^{2}=\frac{1}{9}(\mathrm{x}-3)^{2}-(\mathrm{x}-3)^{2}=-\frac{8}{9}(\mathrm{x}-3)^{2} \end{aligned}$			0.5 1
2.a	$\mathrm{F}(\mathrm{x})$ is not defined if $\mathrm{x}^{2}-9=0$ then $\mathrm{x}=3$ or $\mathrm{x}=-3$.			0.5
2.b	$\mathrm{F}(x)=\frac{-8(x-3)}{x+3}$			1
Question III				
1	$3(500000)+2(750000)=3000000$ and 2(500 000) $+3(750000)=3250000$			1
2	Reduction of 20% on the price of the phone type A then the new price will be 400000 LL. Reduction of 30% on the price of the phone type B then the new price will be 525000 LL. Let m be the number of phones type A and n the number of phones type B. By solving the system: $\left\{\begin{array}{l}400000 \mathrm{~m}+525000 \mathrm{n}=3300000 \\ \mathrm{~m}+\mathrm{n}=7\end{array}\right.$ We get $\mathrm{m}=3$ "type A" and $\mathrm{n}=4$ "type B"			2
	Question IV			Note
1.a	$y_{C}=0$, then, $0=-\frac{4}{3} \mathrm{x}+4 \operatorname{so~} \mathrm{C}(3 ; 0)$.			0.25
1.b	Since $y_{B}=-\frac{4}{3} x_{B}+4$ then B is a point of (D).			0.25
2.a	$\mathrm{CA}=\mathrm{CB}=5$, so ABC is an isosceles triangle with vertex C .			0.5
2.b	ABC is an isosceles triangle with vertex C , so $[\mathrm{CH}]$ is perpendicular bisector and H is the midpoint of $[A B]$, then $x_{H}=\frac{x_{A}+x_{B}}{2}=-1$ and $y_{H}=\frac{y_{A}+y_{B}}{2}=2$, so $H(-1 ; 2)$.			1
3.a	The equation of the line (CH) is: $\mathrm{y}=-\frac{1}{2} \mathrm{x}+\frac{3}{2}$.			0.5
3.b	The line (CH) intersects the axis $y^{\prime} \mathrm{O} y$ in L then $x_{L}=0$ and $\mathrm{y}_{\mathrm{L}}=-\frac{1}{2} \mathrm{x}_{\mathrm{L}}+\frac{3}{2}=\frac{3}{2}$ then $\mathrm{L}\left(0 ; \frac{3}{2}\right)$.			0.5
4.9	The two triangles OLC et CBH are similar: $O \widehat{C} L=H \widehat{C} B:[C H)$ is the bisector of the angle $A \widehat{C} B$ in the isosceles triangle $A B C$. $\mathrm{CO} \mathrm{~L}=\mathrm{C} \widehat{\mathrm{H}} \mathrm{~B}=90^{\circ} .$ The ratio of similarity is: $\begin{array}{l\|l} \mathrm{OLC} \\ \mathrm{HBC} & \frac{\mathrm{OL}}{\mathrm{HB}}=\frac{\mathrm{OC}}{\mathrm{HC}}=\frac{\mathrm{CL}}{\mathrm{BC}} \end{array}$			1
4.b	According to the ratio of similarity: $\mathrm{CL}=\frac{\mathrm{OC} \times \mathrm{BC}}{\mathrm{HC}}=\frac{3 \times 5}{2 \sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}=\frac{3 \sqrt{5}}{2}$			0.5

5	$\tan \mathrm{O} \widehat{\mathrm{C}}=\frac{\mathrm{OL}}{\mathrm{OC}}=\frac{\frac{3}{2}}{3}=\frac{1}{2} \text { then } \mathrm{O} \widehat{\mathrm{C}} \approx 27^{\circ}$ ABC is an isosceles triangle with vertex C then: $20 \widehat{\mathrm{C}} \mathrm{L}+2 \mathrm{~A} \widehat{\mathrm{BC}}=180^{\circ}$, So $A \widehat{B} C=63^{\circ}$.	1
	Question V	Note
1		0.5
2	According to Thales theorem: $\frac{\mathrm{FB}}{\mathrm{FA}}=\frac{\mathrm{FE}}{\mathrm{FD}}=\frac{\mathrm{BE}}{\mathrm{AD}}=\frac{2}{6}=\frac{1}{3}$	0.5
3	$\mathrm{FB}+\mathrm{FA}=8$ since $\mathrm{FA}=3 \mathrm{FB}$ then, $4 \mathrm{FB}=8$ then $\mathrm{FB}=2$.	0.5
4	ADF is a right isosceles triangle with vertex A because $\mathrm{AD}=\mathrm{AF}=6$. $D \widehat{A} F=90^{\circ}$ (the line (T) is tangent to the circle (C) at A), then $A \widehat{F} D=45^{\circ}$.	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$
5	OBH is right isosceles triangle then $\mathrm{H} \widehat{\mathrm{O}}=45^{\circ}$. ADF is right isosceles triangle (part 4) then $\mathrm{A} \widehat{\mathrm{FD}}=45^{\circ}$. In the triangle $\mathrm{OFI}: \mathrm{OIF}=180^{\circ}-(\mathrm{O} \widehat{\mathrm{F}}+\mathrm{I} \widehat{\mathrm{F}})=180^{\circ}-(\mathrm{AFD}+\mathrm{H} \widehat{\mathrm{O}})=90^{\circ}$.	0.5
6.a	OÎE $=90^{\circ}$ and $0 \widehat{\mathrm{~B} E}=90^{\circ}$, so O, I, B and E belong to the same circle (C^{\prime}) of diameter [OE].	1
6.b	OBE is a right isosceles triangle with vertex B therefore by Pythagoras theorem: $\mathrm{OE}^{2}=\mathrm{OB}^{2}+\mathrm{BE}^{2}=4^{2}+2^{2}=20, \mathrm{OE}=2 \sqrt{5}$ so the radius is $\sqrt{5}$.	0.5
7.a	OMB is a right isosceles triangle B (the line (T^{\prime}) is tangent to the circle (C) at B), according to the Pythagoras theorem: $\mathrm{OM}^{2}=\mathrm{OB}^{2}+\mathrm{BM}^{2}=4^{2}+8^{2}=16+64=80, \mathrm{OM}=4 \sqrt{5}$.	0.5
7.b	$\mathrm{OM}^{2}+\mathrm{OE}^{2}=(4 \sqrt{5})^{2}+(2 \sqrt{5})^{2}=80+20=100$ and $\mathrm{ME}^{2}=10^{2}=100$ By the converse of Pythagoras theorem OME is a right triangle at O . So $\mathrm{EOM}=90^{\circ}$ with [OE] is a diameter of the circle (C^{\prime}), so the line (OM) is tangent to $\left(\mathrm{C}^{\prime}\right)$ at O .	0.5

