المادة: رياضيات – لغة إنكليزية الشهادة: الثانوية العامة الفرع: الاقتصاد والاجتماع نموذج رقم: ١/ ٢٠١٩ المدة: ساعتان	الهيئة الأكاديميّة المشتركة قسم: الرياضيات	المركز التربوي للبحوث والإنماء
--	---	-----------------------------------

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- [4 points]

A factory produces a certain article. The table below shows the supply y of this product, expressed in thousands of articles, in terms of the unit price x in thousands LL.

The sale price x_i in thousands LL.	2	3	5	7	10
Supply y_i in thousands of articles	5	7	8	9	11

The pattern remains valid for a price 20 000 LL

- 1) Determine an equation of the regression line $(D_{y/x})$.
- 2) Estimate the supplied number of articles for a unit price of 15 000 LL.
- 3) The demand is modeled by the line $(D_{z/x})$ with equation z = -0.567x + 8.266. The two lines $(D_{y/x})$ and $(D_{z/x})$ intersect at the I(3.158; 6.474). Give an economical interpretation of the coordinates of this point.
- 4) Calculate, in LL, the revenue for a unit price of 7000 LL.
- 5) Let e(x) be the elasticity of demand in terms of the unit price x.
 - a) Show that $e(x) = \frac{567x}{-567x + 8266}$
 - b) Calculate e(4). Give an economical interpretation of the value thus obtained.

II- [4 points]

Part A

Nisrine deposits 4 000 000 LL in a bank at an annual interest rate of 0.5% compounded yearly.

After compounding the interest, Nisrine adds yearly 200 000 LL to her account.

Denote by Vn the amount, in millions LL, that Nisrine has in her account after n years (n is a natural number).

Thus V0 = 4.

- 1) Justify, for all natural numbers *n*, that $V_{n+1} = 1.005V_n + 0.2$.
- 2) Denote by (Wn) the sequence defined, for all natural numbers n, as $W_n = V_n + \alpha$.
 - a) Calculate α if (W_n) is a geometric sequence with common ratio 1.005.
 - b) Take $\alpha = 40$. Express W_n in terms of *n* and deduce that $V_n = 44(1.005)^n 40$.
- 3) a) Calculate the amount in Nisrine's account after ten years.b) Calculate the amount of interest gained by Nisrine over ten years.
- 4) Prove that the sequence (V_n) is increasing.

Part B

At the same date when Nisrine deposited the 4 000 000 LL, Nadia invested 8 000 000 LL in the same bank following the rule: $U_{n+1} = 1.005U_n$, where U_n is the amount, in millions LL, in Nadia's account after *n* years (*n* is a natural number). Thus $U_0 = 8$.

- 1) Prove that (U_n) is a geometric sequence and that $U_n = 8(1.005)^n$.
- 2) We admit that (U_n) is also an increasing sequence. After how many years would the amount in Nisrine's account exceed the amount of money in Nadia's account for the first time?

III- [4 points]

An urn U contains 4 white balls, 5 red balls and 3 green balls.

Part A

We select randomly and successively 3 balls from U without replacement.

- 1) Calculate the probability of selecting three balls of the same color.
- 2) Prove that the probability of selecting at least one green ball and at least one red ball among the 21

three selected balls is $\frac{21}{44}$.

Part B

A player pays an amount of 10 000 LL to participate in a game.

This game runs as follows:

The player selects at random and simultaneously two balls from the urn U.

- ▶ If at most one of the two selected balls is green, the player receives 5 000 LL and the game ends.
- If the two selected balls are both green, they are kept outside the urn U and the player receives 8 000 LL. After that, the player selects randomly and simultaneously two balls from the remaining 10 balls in U.
 - If these two selected balls are of the same color the player receives 12 000 LL and the game ends;
 - Otherwise, the player receives 2 000 LL and the game ends.

Let X be the random variable equal to the algebraic gain of the player

(The algebraic gain could be zero, positive or negative).

1) Justify that the values of X are: -5 000 ; 0 and 10 000.

2) Prove that
$$P(X = 0) = \frac{29}{990}$$

- 3) Determine the probability distribution of X.
- 4) Do you expect this player to win? Justify.

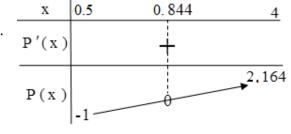
IV- [8 points]

Let f be the function defined on $[0;+\infty[$ as $f(x) = (-2x - 1)e^{-x} + 2$ and denote by (C) its representative

curve in an orthonormal system $(0, \vec{i}, \vec{j})$.

Part A

- 1) Determine $\lim_{x \to \infty} f(x)$. Deduce an equation of an asymptote to (C).
- 2) Prove that $f'(x) = (2x 1)e^{-x}$ and set up the table of variations of f.
- 3) Draw (C) and its asymptote.
- 4) The line (d) with equation $y = \frac{x}{2}$ intersects the curve (C) at one point only with abscissa α . Verify that $3.5 < \alpha < 3.6$.
- 5) Let F be the function defined on $[0;+\infty[$ as $F(x) = (2x+3)e^{-x} + 2x$.
 - a) Show that F is a primitive of f.
 - b) Deduce the area of the region limited by (C), the x-axis and the lines of equations x = 0 and x = 1.


Part B

In what follows, suppose that $\alpha = 3.55$

A factory produces souvenirs. The total cost of production of souvenirs C_T , expressed in millions LL, is modeled as $C_T(x) = f(x)$ only for all x in [0.5; 4], where x, expressed in thousands, represents the number of souvenirs produced. $(0.5 \le x \le 4)$.

- 1) Calculate, in LL, the total cost of production of 3 000 souvenirs. In this case, deduce the average cost of production of one souvenir.
- 2) The adjacent table is the table of variations of the profit function P of this factory, in millions LL, over [0.5; 4].
 - a) Study if this factory can achieve a profit equal to 3 000 000 LL.
 - b) Determine the minimum number of souvenirs to be sold so that the factory realizes a profit.
 - c) The profit function P is defined over [0.5; 4] as

$$P(x) = x - 2 + (2x + 1)e^{-x}$$
.

Prove that the revenue function R, in millions LL, is modeled as R(x) = x knowing that the whole production is sold.

d) Calculate the number of souvenirs that should be sold so that the revenue is double the total cost.

	تصحيح	اسس ا
QI	Answers	Mark
1	$(D_{y/x}): y = 0.679x + 4.330$	0.5
2	Supply = $0.679(15) + 4.330 = 14$, 515 thousand articles, then 14515 articles	1.5
3	The equilibrium price is 3158 LL and the equilibrium quantity is 6474 articles.	0.75
3		0.75
4	Revenue = $(7)(-0.567(7) + 8.266)(1000) = 30079$ LL	1.5
5a	$e(x) = -x \cdot \frac{z'}{z} = \frac{567x}{-567x + 8266}$	1
	e(4) = 0.378. For a price of 4000 LL, if the price increases by 1% then the demand	0.25
5b	decreases by 0.378%.	0.75

المادة: رياضيات - لغة إنكليزية

الشهادة: الثانوية العامة

الفرع: الاقتصاد والاجتماع نموذج رقم: ١/ ٢٠١٩ المدة: ساعتان

QII	Answers	Mark
A1	$V_{n+1} = (1+0.5/100)V_n + 200000/1000000 = 1.005V_n + 0.2$	0.5
A2a	$W_{n+1} = 1.005 W_n$; so $\alpha = 40$	1
A2b	$W_n = 44(1.005)^n$; and $V_n = 44(1.005)^n - 40$	0.25 0.25
A3a	$V_{10} = 6.250165$. So: 6250165 LL	1
A3b	$I = 6\ 250\ 165 - (4\ 000\ 000 + 200\ 000 x 10) = 250\ 165\ LL$	0.5
A4	$\begin{split} V_{n+1} - V_n &= 44(1.005)^{n+1} - 44(1.005)^n = 44(1.005)^n (1.005\text{-}1) \\ &= 0.22(1,005)^n > 0 \text{ . Therefore } (V_n) \text{ is an increasing sequence.} \end{split}$	1.5
B1	The common ratio is 1.005 ; $U_n = U_0 \times q^n = 8(1.005)^n$	0.25 0.25
B2	$V_n > U_n$ gives $n > 21.12$ so $n = 22$. Thus after 22 years.	1.5

QIII	Answers	Mark
A1	P(WWWorRRR or GGG) = $\frac{A_4^3 + A_5^3 + A_3^3}{A_{12}^3} = \frac{3}{44}$	1
A2	(2G1R or 1G2R or 1G1R1W) where 2G1R can be written $\frac{3!}{2!} = 3$ ways: GGR, GRG, RGG and similarly for 2 <i>R1G</i> . where <i>RGW</i> can be written in 3! ways	1.5
	$P = \frac{A_3^2 \times A_5^1 \times 3 + A_3^1 \times A_5^2 \times 3 + A_3^1 \times A_5^1 \times A_4^1 \times 3!}{A_{12}^3} = \frac{21}{44}$	
B1	5000 - 10000 = -5000; the first 2 selected balls are not green and the game ends. 8000 + 2000 - 10000 = 0; the first 2 selected balls are green and the second 2 selected balls are of different color. 8000 + 12000 - 10000 = 10000. The first 2 selected balls are green and the second 2 selected balls are of the same color.	1
B2	$P(X = 0) = \frac{C_3^2}{C_{12}^2} \times \left(1 - \frac{C_4^2 + C_5^2}{C_{10}^2}\right) = \frac{29}{990}.$ The first 2 balls are both green $\frac{C_3^2}{C_{12}^2}$ and the second 2 balls from 10 are of different color (RG, RW, WG) $\frac{C_5^1 C_1^1 + C_5^1 C_4^1 + C_4^1 C_1^1}{C_{10}^2} = \left(1 - \frac{C_4^2 + C_5^2}{C_{10}^2}\right)$ "opposite of 2 balls same color"	1
B3	$P(X = -5000) = 1 - \frac{C_3^2}{C_{12}^2} = \frac{21}{22}$ $P(X = 10000) = \frac{C_3^2}{C_{12}^2} \times \frac{C_4^2 + C_5^2}{C_{10}^2} = \frac{8}{495} \text{ and } P(X = 0) = \frac{29}{990}$	2
B4	EX = 0 + (-5000)(21/22) + (10000)(8/495) = -4611.11 < 0 The player is therefore expected to lose.	0.5
		·
QIV	Answers	Mark
A1	$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (-2xe^{-x} - e^{-x} + 2) = 2 : y = 2$ HA	1

QIV	Answers	
A1	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (-2xe^{-x} - e^{-x} + 2) = 2 \ ; \ y = 2 \ HA$	1
A2	$f'(x) = (-2 + 2x + 1)e^{-x} = (2x - 1)e^{-x}$ $\frac{x 0 \qquad 1/2 \qquad + \infty}{f'(x) \qquad - \qquad 0 \qquad + \qquad + \qquad + \infty}$ $f(x) \frac{1}{1 \qquad 0.786}$	2

A3	$ \begin{array}{c} 6 & y \\ 5 & 4 \\ 4 & 4 \\ 3 & (d) \\ \hline 2 & (C) \\ \hline -2 & -1 \\ $	1.5
A4	f(3.5) = 1.758 > 3.5/2 $f(3.6) = 1.775 < 3.5/2 \text{Then } 3.5 < \alpha < 3.6$	1
A5a	$F'(x) = (2 - 2x - 3)e^{-x} + 2 = (-2x - 1)e^{-x} + 2 = f(x)$	1
A5b	Area = $\int_0^1 f(x) dx = [F(x)]_0^1 = 5e^{-1} - 1 = 0.839 u^2$	1.5
B1	$C_T(3) = 1.651490$ LL ; therefore 1 651 490 LL Average cost of production of a souvenir = 1651490/3000 \approx 550.5 LL	2
B2a	According to the table of variations of the profit function: 2164000 < 3000000 therefore NO.	0.5
B2b	P(0.844) = 0 and P strictly increasing. For the production of 845 souvenirs the factory realizes profit.	1.5
B2c	R(x) = P(x) + C(x) = x	0.5
B2d	$R(x) = 2C(x)$ gives $f(x) = x/2$, then $x = \alpha$, therefore 3 550 articles.	1.5