المادة: رياضيات – لغة الشهادة: الثانوية العام الفرع: الاقتصاد والاجت نموذج رقم: 2/ 2019 المذة: ساعتان	ة الأكاديميّة المشتركة قسم: الرياضيات
---	--

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (4 points)

ماع

The table below shows the year end price of 1kg antique coins for six consecutive years.

Year	2008	2009	2010	2011	2012	2013
Rank of the year (x _i)		2	3	4	5	6
Price (y _i in hundred thousand LL)	5	7.5	8.5	10	11	12

1) Sketch in a rectangular system of axes the scatter plot, as well as the center of gravity $G(\overline{x}, \overline{y})$ of the given data.

- 2) Determine an equation of the regression line $(D_{y/x})$ of y in terms of x, and draw this line.
- 3) Suppose that the above pattern remains valid until the end of the year 2026.
 - a- Estimate the price of 1 kg antique coins at the end of the year 2018.
 - b- Calculate the percentage error of estimation knowing that the actual price of 1 kg of antique coins at the end of the year 2018 was 1 900 000 LL.
- 4) An exporter sold 50 kg of antique coins at the end of the year 2018 for a price of 1 900 000LL per kg. The exporter decides to buy a new office that costs 150 million LL. He pays all the amount of the selling coins as a down-payment and borrows the remaining amount from a bank as a loan for a period of 7 years. The bank charges an annual interest rate of 6.5% compounded monthly to be paid back equally at the end of each month. Calculate the value of the monthly payment.

II- (4 points)

A graduate wishes to work abroad. He receives two offers on his annual salary from two companies A and B.

Company A offers:

An annual salary of 54 000 000 LL with 6 % annual increase, at the beginning of every year, added to his salary of the previous year.

Company B offers:

An annual salary of 60 000 000 LL with an annual increase of 2 300 000 LL, at the beginning of every year, added to his salary of the previous year.

1) Denote by u_n the annual salary of the graduate at the beginning of the nth year if he chooses

to work in company A. Let $u_1 = 54\ 000\ 000$.

a- Calculate u_2 .

b- Prove that (u_n) is a geometric sequence, then calculate u_n in terms of n.

2) Denote by v_n the annual salary of the graduate at the beginning of the nth year if he chooses

to work in company B. Let $v_1 = 60\ 000\ 000$.

a-Calculate V_2 .

b- Calculate v_n in terms of n.

- 3) This graduate plans to work for 10 years abroad.
 - a- Calculate the sum S_A of the amount of money he would receive if he works in company A during 10 years.
 - b- Which among these two offers is more advantageous for the graduate.

III- (4 points)

In an Interschool Competition, each question is written on a separate card, and all these cards are placed in the same bag. 60% of these cards carry math questions while others carry general knowledge questions. A student, who is a contestant in this competition, has to choose randomly **one card** from the bag and answer the question that is written on it.

Consider the following events:

 $M\!\!:$ « The student chooses a \boldsymbol{math} question ».

G: « The student chooses a general knowledge question ».

C: « The student's answer is **correct**».

1) Calculate the probabilities p(M) and p(G).

2) We are given the following information, which may be used to answer the remaining questions:

- The probability that the student answers correctly knowing that it is a math question is $\frac{2}{2}$.
- The probability that the student answers correctly knowing that it is a general knowledge question is $\frac{3}{4}$.

a- Show that the probability $p(M \cap C) = \frac{2}{5}$.

b- Calculate the probability p(C).

3) The competition rules are as follows: Each contestant draws at first **one** question:

- If the contestant answers this question correctly, he/she scores **10 points** and does not draw a second question.
- But if the contestant does not answer the first question correctly, then this question is **put back** in the bag, after which he/she draws randomly one more question from the bag. If his/her answer is correct he/she scores **6 points**;

otherwise if his/her answer is not correct then she scores 0 points.

Let X be the random variable that is equal to the number of points that may be scored by contestant.

- a- Determine the three possible values of X.
- b- Determine the probability distribution for X.

IV- (8 points) Part A

Consider the function f defined over $]0;+\infty[$ as $f(x) = 1 + \frac{(\ln x)^2}{x}$ and denote by (C) its representative

curve in an orthonormal system $(0, \vec{\iota}, \vec{j})$.

- 1) Determine $\lim_{x\to 0^+} f(x)$. Deduce an equation of an asymptote to the curve (C).
- 2) Prove that $\lim_{x\to+\infty} f(x) = 1$. Deduce an equation of another asymptote to the curve (C).

3) Show that $f'(x) = \frac{(\ln x)(2 - \ln x)}{x^2}$, then set up the table of variations of f.

4) Draw (C).

<u>Part B</u>

An enterprise produces a certain type of articles. The total cost function, expressed in millions LL, is modeled as $C(x) = 1 + \frac{(\ln x)^2}{x}$ for all $x \in [1;e^2]$, where x is the number, in thousands LL, of articles produced.

- 1) Calculate, in LL, the total cost of 2000 articles.
- 2) Suppose that the whole production is sold.

The profit function, expressed in millions LL, is modeled as $P(x) = 2x - 1 - \frac{(\ln x)^2}{x}$, and its table of variations is shown below:

a- Complete the given table.

- b- Study if this enterprise can achieve a profit equal to 2 500 000 LL.
- c- Prove that the selling price of one article is 2 000 LL.

أسس التصحيح

QII	Answers	Mark
1a	$U_2 = 54\ 000\ 000\ +0.06(54\ 000\ 000) = 57\ 240\ 000$	1
1b	$U_{n+1} = 1.06U_n$ so (U_n) is a geometric sequence with common ratio 1.06; and $U_{n+1} = U_1 (1.06)^{n-1} = 54\ 000\ 000(1.06)^{n-1}$	1.5
2a	$V_2 = 62\ 300\ 000$;	1/2
2b	(V_n) is an arithmetic sequence $V_n = V_1 + (n-1)(2\ 300\ 000) = 57\ 700\ 000 + 2\ 300\ 000n$	1

3a	$S_{A} = 5400000 \left(\frac{1 - (1.06)^{10}}{1 - 1.06} \right) = 711762926.9LL$	1.5
3b	$S_{B} = \frac{10}{2} (2U_{1} + 9(230000)) = 70350000LL$ $S_{A} > S_{B}$ So Offer company A is more advantageous.	1.5

QIII	Answers	Mark
1	$P(M) = \frac{60}{100} = 0.6$ and $P(G) = \frac{40}{100} = 0.4$	1
2a	$P(M \cap C) = p(M) \times p(C/M) = 0.6 \times \frac{2}{3} = \frac{2}{5}$	1
2b	$p(C) = P(G \cap C) + P(M \cap C) = \frac{2}{5} + \frac{3}{10} = \frac{7}{10}$	2
3a	The possible values of X are :0, 6 and 10	1
3b	$P(X = 0) = p(\overline{C}) \times p(\overline{C}) = \frac{9}{100}$ $P(X = 6) = p(\overline{C}) \times p(C) = \frac{21}{100} \text{ and } P(X = 10) = \frac{7}{10}$	2

QIV	Answers	
A1	$\lim_{x \to 0^{+}} f(x) = 1 + \frac{+\infty}{0^{+}} = +\infty ; x = 0 VA$	1.5
A2	$\lim_{x \to +\infty} f(x) = 1 + \lim_{x \to +\infty} \frac{(\ln x)^2}{x} = 1 + 0 = 1 \text{ since } \lim_{x \to \infty} \frac{(\ln x)^2}{x} = \lim_{x \to \infty} \frac{2\ln x}{x} = 0$ So y = 1 HA	1.5
A3	$f'(x) = \frac{(\ln x)(2 - \ln x)}{x^2} \qquad \frac{x 0 1 e^2 +\infty}{f'(x) - + -} \\ \frac{f'(x) - + -}{f(x) 1 541 1}$	3

