المادة: رياضيات ـ لغة إنكليزية الثشهادة: الثانوية العامـة الفرع: الاقتصاد والاجتماع نموذج رقم: 2/ 2019 المدّة: ساعتان	الهيئة الأكاديميّة المشتركة	المركز التربوي للبحوث والإنماء

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم اليبانات يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتز ام بترتيب الدسائل الواردة في الدسابقة).

I- (4 points)

The table below shows the year end price of 1 kg antique coins for six consecutive years.

Year	2008	2009	2010	2011	2012	2013
Rank of the year $\left(\mathrm{x}_{\mathrm{i}}\right)$	1	2	3	4	5	6
Price $\left(\mathrm{y}_{\mathrm{i}}\right.$ in hundred thousand LL)	5	7.5	8.5	10	11	12

1) Sketch in a rectangular system of axes the scatter plot, as well as the center of gravity $G(\bar{x}, \bar{y})$ of the given data.
2) Determine an equation of the regression line $\left(D_{y / x}\right)$ of y in terms of x, and draw this line.
3) Suppose that the above pattern remains valid until the end of the year 2026.
a- Estimate the price of 1 kg antique coins at the end of the year 2018.
b- Calculate the percentage error of estimation knowing that the actual price of 1 kg of antique coins at the end of the year 2018 was 1900000 LL.
4) An exporter sold 50 kg of antique coins at the end of the year 2018 for a price of 1900000 LL per kg . The exporter decides to buy a new office that costs 150 million LL. He pays all the amount of the selling coins as a down-payment and borrows the remaining amount from a bank as a loan for a period of 7 years. The bank charges an annual interest rate of 6.5% compounded monthly to be paid back equally at the end of each month. Calculate the value of the monthly payment.

II- (4 points)

A graduate wishes to work abroad. He receives two offers on his annual salary from two companies A and B.

Company A offers:

An annual salary of 54000000 LL with 6% annual increase, at the beginning of every year, added to his salary of the previous year.

Company B offers:

An annual salary of 60000000 LL with an annual increase of 2300000 LL , at the beginning of every year, added to his salary of the previous year.

1) Denote by u_{n} the annual salary of the graduate at the beginning of the nth year if he chooses to work in company A. Let $u_{1}=54000000$.
a- Calculate u_{2}.
b- Prove that $\left(u_{n}\right)$ is a geometric sequence, then calculate u_{n} in terms of n.
2) Denote by v_{n} the annual salary of the graduate at the beginning of the nth year if he chooses to work in company B. Let $\mathrm{v}_{1}=60000000$.
a- Calculate v_{2}.
b - Calculate v_{n} in terms of n.
3) This graduate plans to work for 10 years abroad.
a- Calculate the sum S_{A} of the amount of money he would receive if he works in company A during 10 years.
b- Which among these two offers is more advantageous for the graduate.

III- (4 points)

In an Interschool Competition, each question is written on a separate card, and all these cards are placed in the same bag. 60% of these cards carry math questions while others carry general knowledge questions.
A student, who is a contestant in this competition, has to choose randomly one card from the bag and answer the question that is written on it.
Consider the following events:
$\mathrm{M}:$ « The student chooses a math question».
G: «The student chooses a general knowledge question».
$\mathrm{C}:$ «The student's answer is correct».

1) Calculate the probabilities $p(M)$ and $p(G)$.
2) We are given the following information, which may be used to answer the remaining questions:

- The probability that the student answers correctly knowing that it is a math question is $\frac{2}{3}$.
- The probability that the student answers correctly knowing that it is a general knowledge question is $\frac{3}{4}$.
a- Show that the probability $\mathrm{p}(\mathrm{M} \cap \mathrm{C})=\frac{2}{5}$.
b- Calculate the probability $\mathrm{p}(\mathrm{C})$.

3) The competition rules are as follows: Each contestant draws at first one question:

- If the contestant answers this question correctly, he/she scores $\mathbf{1 0}$ points and does not draw a second question.
- But if the contestant does not answer the first question correctly, then this question is put back in the bag, after which he/she draws randomly one more question from the bag. If his/her answer is correct he/she scores 6 points; otherwise if his/her answer is not correct then she scores 0 points.
Let X be the random variable that is equal to the number of points that may be scored by contestant.
a- Determine the three possible values of X.
b- Determine the probability distribution for X.

IV- (8 points)

Part A

Consider the function f defined over $] 0 ;+\infty\left[\right.$ as $\mathrm{f}(\mathrm{x})=1+\frac{(\ln \mathrm{x})^{2}}{\mathrm{x}}$ and denote by (C) its representative curve in an orthonormal system $(0, \vec{i}, \vec{\jmath})$.

1) Determine $\lim f(x)$. Deduce an equation of an asymptote to the curve (C). $x \rightarrow 0^{+}$
2) Prove that $\lim _{x \rightarrow+\infty} f(x)=1$. Deduce an equation of another asymptote to the curve (C).
3) Show that $f^{\prime}(x)=\frac{(\ln x)(2-\ln x)}{x^{2}}$, then set up the table of variations of f.
4) $\operatorname{Draw}(\mathrm{C})$.

Part B

An enterprise produces a certain type of articles. The total cost function, expressed in millions LL, is modeled as $\mathrm{C}(\mathrm{x})=1+\frac{(\ln \mathrm{x})^{2}}{\mathrm{x}}$ for all $x \in\left[1 ; e^{2}\right]$, where x is the number, in thousands LL, of articles produced.

1) Calculate, in LL, the total cost of 2000 articles.
2) Suppose that the whole production is sold.

The profit function, expressed in millions $L L$, is modeled as $P(x)=2 x-1-\frac{(\ln x)^{2}}{x}$, and its table of variations is shown below:

a- Complete the given table.
b- Study if this enterprise can achieve a profit equal to 2500000 LL.
c- Prove that the selling price of one article is 2000 LL .

المادة: رياضيات ـ لغة إنكليزية الثشهادة: الثثنوية العامـة الفرع: الاقتصاد والاجتماع نموذج رقم: 2/ 2019 المدّة: ساعتان	الهيئة الأكاديميّة المشتنركة	المركز التربوي للبحوث والإنماء

| QI | | Answers | Mark |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

QII	Answers	Mark
1 a	$\mathrm{U}_{2}=54000000+0.06(54000000)=57240000$	1
1 b	$\mathrm{U}_{\mathrm{n}+1}=1.06 \mathrm{U}_{\mathrm{n}}$ so $\left(\mathrm{U}_{\mathrm{n}}\right)$ is a geometric sequence with common ratio 1.06; and $\mathrm{U}_{\mathrm{n}+1}=\mathrm{U}_{1}(1.06)^{\mathrm{n}-1}=54000000(1.06)^{\mathrm{n}-1}$	1.5
2 a	$\mathrm{V}_{2}=62300000 ;$	$1 / 2$
2 b	$\left(\mathrm{V}_{\mathrm{n}}\right)$ is an arithmetic sequence $\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{1}+(\mathrm{n}-1)(2300000)=57700000+2300000 \mathrm{n}$	1

3 a	$\mathrm{S}_{\mathrm{A}}=54000000\left(\frac{1-(1.06)^{10}}{1-1.06}\right)=711762926.9 \mathrm{LL}$	1.5
3 b	$\mathrm{S}_{\mathrm{B}}=\frac{10}{2}\left(2 \mathrm{U}_{1}+9(2300000)\right)=703500000 \mathrm{LL}$ $\mathrm{S}_{\mathrm{A}}>\mathrm{S}_{\mathrm{B}}$ So Offer company A is more advantageous.	1.5

QIII	Answers	Mark
1	$\mathrm{P}(\mathrm{M})=\frac{60}{100}=0.6$ and $\mathrm{P}(\mathrm{G})=\frac{40}{100}=0.4$	1
2 a	$\mathrm{P}(\mathrm{M} \cap \mathrm{C})=\mathrm{p}(\mathrm{M}) \times \mathrm{p}(\mathrm{C} / \mathrm{M})=0.6 \times \frac{2}{3}=\frac{2}{5}$	1
2 b	$\mathrm{p}(\mathrm{C})=\mathrm{P}(\mathrm{G} \cap \mathrm{C})+\mathrm{P}(\mathrm{M} \cap \mathrm{C})=\frac{2}{5}+\frac{3}{10}=\frac{7}{10}$	2
3 a	The possible values of X are $: 0,6$ and 10	1
3 b	$\mathrm{P}(\mathrm{X}=0)=\mathrm{p}(\overline{\mathrm{C}}) \times \mathrm{p}(\overline{\mathrm{C}})=\frac{9}{100}$	
$\mathrm{P}(\mathrm{X}=6)=\mathrm{p}(\overline{\mathrm{C}}) \times \mathrm{p}(\mathrm{C})=\frac{21}{100}$ and $\mathrm{P}(\mathrm{X}=10)=\frac{7}{10}$	2	

QIV		Answers	$\underset{\mathbf{k}}{\mathrm{Mar}}$
A1	$\lim _{x \rightarrow 0^{+}} f(x)=1+\frac{+\infty}{0^{+}}=+\infty ; x=0 \mathrm{VA}$		1.5
A2	$\begin{aligned} & \lim _{x \rightarrow+\infty} f(x)=1+\lim _{+\infty} \frac{(\ln x)^{2}}{x}=1+0=1 \text { since } \lim _{t+\infty} \frac{(\ln x)^{2}}{x}=\lim _{+\infty} \frac{2 \ln x}{x}=0 \\ & \text { So } y=1 \text { HA } \end{aligned}$		1.5
A3	$f^{\prime}(x)=\frac{(\ln x)(2-\ln x)}{x^{2}}$	$\begin{array}{llll} 0 & 1 & \mathrm{e}^{2} & +\infty \\ \hline \end{array}$	
		\begin{tabular}{l\|l	l
\hline			
\end{tabular}			
			3

| A4 | | | |
| :--- | :--- | :--- | :--- | :--- |

