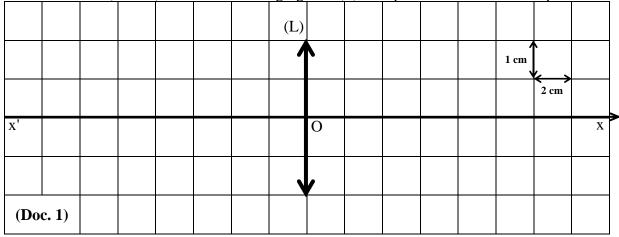
المادة: الفيزياء – لغة إنكليزية الشهادة: المتوسطة نموذج رقم 3 / 2019 المدة: ساعة و احدة

الهيئة الأكاديميّة المشتركة قسم: العلوم

This test includes four mandatory exercises in two pages.

The use of non-programmable calculators is allowed.

Exercise 1 (3 points) True or False


Answer by "True" or "False" and write the corrected false statement.

- 1) The pressure exerted by a box placed on the ground increases by increasing its contact surface area with this ground.
- 2) The pressure exerted by a liquid at the bottom of a container increases by increasing the amount of the liquid in this container.
- 3) The same amount of oil exerts always the same pressure at the bottom of a container of any shape.

Exercise 2 (7 points) A converging lens used in biology

The aim of this exercise is to determine, using a geometrical construction, the characteristics of the image (A'B') of a luminous object (AB) given by a converging lens (L) of focal length f = 12 cm. The object, of size AB = 1 cm, is placed at 6 cm from (L), perpendicularly to its optical axis, A being on this axis.

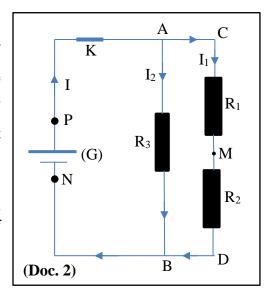
The document (Doc. 1) shows the converging lens (L), its optical center O and its optical axis x'Ox.

1) Image construction

- 1-1) Draw, on a graph paper, using the indicated scale, the diagram that shows this converging lens (L), its optical axis x'Ox, the object focus F, the image focus F' and the object (AB).
- **1-2**) Construct on the diagram, giving the necessary explanations, the path of the emergent ray corresponding to the incident ray emitted by the point B:
 - 1-2-1) And passing through O;
 - **1-2-2**) Parallel to the optical axis.
- 1-3) Construct the image (A'B') of the object (AB) given by (L).

2) Characteristics of the image

- **2-1**) Specify the nature of (A'B').
- **2-2**) Indicate the direction of the image (A'B') with respect to that of the object (AB).
- **2-3**) Determine the size A'B' of (A'B').


3) Application

Deduce a role of converging lenses in studying the parts of small insects in biology.

Exercise 3 (5 points) Electric circuit

The circuit shown in (Doc. 2) is formed of:

- A generator (G) delivering across its terminals a constant voltage U_{PN};
- Three resistors (R_1) , (R_2) and (R_3) , of respective resistances $R_1 = 3 \Omega$, $R_2 = 2 \Omega$ and $R_3 = 10 \Omega$, connected as shown in (Doc. 2).
- 1) Calculate the resistance R' of the resistor (R') equivalent to (R_1) and (R_2) .
- 2) The current I_2 carried by the resistor (R₃) is 0.8 A. Calculate the voltage U_{AB} .
- 3) An oscilloscope is connected in order to display the voltage U_{PN} . Calculate the vertical sensitivity S_{ν} used if the luminous median line is displaced by 4 divisions up.
- **4)** Determine the current I₁.
- 5) Calculate the main current I carried by (G).

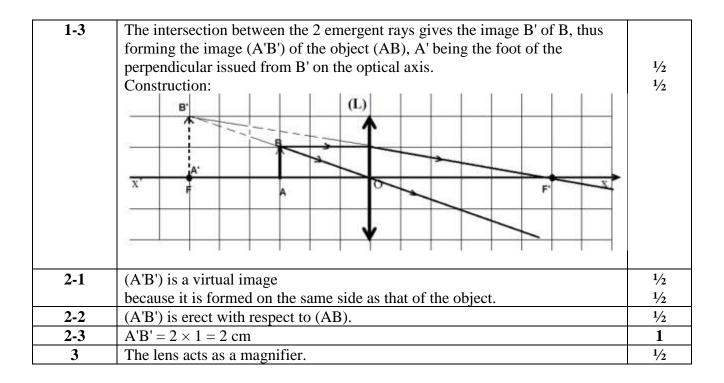
Exercise 4 (5 points) Buoyant Force

An empty flat rubber balloon, of mass 12 g, is filled with helium gas of density $\rho_{He} = 0.18 \text{ kg/m}^3$. It takes then the shape of a sphere of radius R = 0.6 m. Given:

- g = 10 N/kg;
- Density of the air: $\rho = 1.3 \text{ kg/m}^3$;
- Volume V of a sphere of radius R: $V = \frac{4}{3}\pi R^3$.
- 1) Calculate the volume of the helium gas used to fill the balloon.
- 2) Calculate the mass of the helium gas used in this balloon.
- 3) Calculate the magnitude W of the weight of the system (Balloon Helium gas).
- 4) Calculate the magnitude F of the buoyant force exerted by the surrounding air on the balloon.
- 5) Specify if the balloon rises.

المادة: الفيزياء _ لغة إنكليزية الشهادة: المتوسطة نموذج رقم 3 / 2019 المدة: ساعة واحدة

الهيئة الأكاديمية المشتركة قسم: العلوم



أسس التصحيح

Exercise 1 (3 points) **True or False**

Question	Answer	Mark
1	False. The pressure exerted by a box placed on the ground decreases by	1
	increasing its contact surface area with this ground.	
2	True.	1
3	False. The same amount of oil can exert a different pressure at the bottom of	1
	a container of any shape.	

	(7 points) A converging lens used in biology	
Question	Answer	Mark
1-1	Diagram: (L) x' F A O F X	1
1-2-1	The ray issued from B and passing through O continues its path without deviation. Ray tracing: (L) X	1/2 1/2
1-2-2	The emergent ray corresponding to the incident ray issued from B parallel to the optical axis converges towards the image focus F'. Ray tracing:	1/2 1/2

Exercise 3 (5 points) Electric circuit

Question	Answer	Mark
1	$R' = R_1 + R_2 = 3 + 2 = 5 \Omega$	1
2	According to Ohm's law: $U_{AB} = I_2.R_3 = 0.8 \times 10 = 8 \text{ V}$	1
3	$U_{PN} = U_{AB} = 8 \text{ V}$	
	$U_{PN} = S_v.Y$ so $S_v = U_{PN}/Y = 8 \text{ V} / 4 \text{ div} = 2 \text{ V/div}$	1
4	$U_{CD} = U_{AB} = 8 \text{ V}$	
	$I_1 = U_{CD}/R' = 8/5 = 1.6 A$	1
5	$I = I_1 + I_2 = 1.6 + 0.8 = 2.4 \text{ A}$	1

Exercise 4 (5 points) Buoyant Force

Question	Answer	Mark
1	The gas takes the shape of the container, thus: $V = \frac{4}{3}\pi(0.6)^3 = 0.905 \text{ m}^3$	1/2
2	$\rho_{He} = m_{Helium}/V$	1/2
	thus: $m_{Helium} = \rho_{He} \times V = 0.18 \times 0.905 = 0.163 \text{ kg}$	1/2
3	$W = m_{\text{total}}.g = (m_{\text{balloon}} + m_{\text{Helium}}).g$	1
	$W = (0.012 + 0.163) \times 10 = 1.75 \text{ N} \approx 1.8 \text{ N}$	1/2
4	$F = \rho Vg$	1/2
	$F = 1.3 \times 0.905 \times 10 = 11.765 \text{ N} \approx 11.8 \text{ N}$	1/2
5	\overrightarrow{W} acts vertically downwards; \overrightarrow{F} acts vertically upwards.	
	The balloon rises since $F > W$.	1