

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابق).

#### I- (2 points)

All the steps of calculation must be shown.

Consider three distinct points A, P and N such that:

AN = 
$$3 - \frac{1}{5} \times \frac{10}{3} - \frac{1}{3}$$
; NP =  $\frac{4}{5 - \sqrt{5}} - \frac{\sqrt{5}}{5}$  and AP =  $\frac{2 \times 10^8 + 10^7}{7 \times 10^4 \times 10^3}$ 

- 1) Show that AN, NP, and AP are natural numbers.
- 2) Verify that the three points A, N, and P are collinear.

#### II- (3 points)

In a school there are two sections for grade 9, section A and section B.

1) In grade 9 section A, 40% of the students are boys.

Let x be the number of girls and y be the number of boys.

- **a.** Show that 2x = 3y.
- **b.** Knowing that x = y + 5. Write a statement that describes this relation between x and y.

c. Use parts a. and b. to calculate the number of girls and the number of boys in section A.

2) In grade 9 section B,  $\frac{4}{9}$  of students are girls while the number of boys in section B is equal to 10.

Calculate the number of girls in section B.

### III- (4 points)

In the adjacent figure,

- EFGK is a rectangle
- EF = 3x + 4 and FG = x + 2 with x is a real positive number
- The points F, G and A are collinear such that AG = 3x.

Denote by  $S_1$  the area of the rectangle EFGK and by  $S_2$  the area of the triangle KFA.

- 1) a. Calculate  $S_1$  and  $S_2$  in terms of x.
  - **b.** Show that  $S_2 S_1 = (3x + 4)(x 1)$ .
  - **c.** Calculate x knowing that  $S_2 = S_1$ .
    - In this case what does the line (KG) represent for the segment [FA]?
- **2) a.** Calculate  $KA^2$  in terms of x.
  - **b.** Verify that  $3x^2 + 4x 4 = (3x 2)(x + 2)$ .
  - **c.** Determine x knowing that  $KA = 2\sqrt{10}$ .



#### IV- (5 points)

In an orthonormal system of axes x'Ox and y'Oy, consider the line (d) with equation y = x + 5 and the point A(-3; 2).

- a. Verify that A is a point on the line (d).
   b. Let B be the intersection of (d) with y'Oy. Calculate the coordinates of B.
   c. Plot the points A and B. Draw the line (d).
- 2) Let (d') be the line through B and perpendicular to (d).a. Write the equation of (d').

**b.** Verify that the point E(5; 0) is the intersection point of (d') with x'ox.

**c.** Draw (d').

- 3) Let (C) be the circle circumscribed about triangle ABE.
  - **a.** Calculate the coordinates of point I, the center of (C), and verify that its radius is equal to  $\sqrt{17}$ .

**b.** Show that the point F(0; -3) is on the circle (C).

c. Show that the triangle AFE is right isosceles.

- 4) Let L be the translate of E by the translation with vector  $\vec{FI}$ . Determine the coordinates of L.
- 5) Let G be the fourth vertex of the parallelogram IELG. Show that G is on the circle (C).

## V-(6 points)

In the adjacent figure,

- (C) is a circle with diameter [AB] such that AB = 10
- D is a point on (C) such that DB = 6
- [DL] is a diameter of (C)
- (*d*) is the tangent to (C) at B
- E is the symmetric of D with respect to B
- F is the orthogonal projection of E on (*d*).
  - 1) Draw the figure.
  - 2) Calculate AD.
  - 3) a. Show that the two triangles ABD and BEF are similar and write the ratio of similarity.b. Colorabeta EF and excite that EP = 4.8
    - **b.** Calculate FE and verify that FB = 4.8.
  - 4) Let G be the point of intersection of (*d*) and (AD).Show that the points D, G, F and E are on the same circle (C') and determine a diameter of (C').

5) Let I be the center of the circle (C').

**a.** Show that the two lines (IB) and (DG) are parallel.

- **b.** Show the points L, B and I are collinear.
- 6) **a.** Calculate  $\tan \widehat{BAD}$ , and deduce that BG =7.5.
  - **b.** Calculate the radius of the circle (C').





الشهادة: المتوسطة

المادة: رياضيات - لغة إنكليزية

# أسس التصحيح

|              | Question I                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pts  |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| 1            | AN=3- $\frac{1}{5} \times \frac{10}{3} - \frac{1}{3} = 3 - \frac{2}{3} - \frac{1}{3} = 2;$<br>NP= $\frac{4}{5 - \sqrt{5}} - \frac{\sqrt{5}}{5} = \frac{4}{5 - \sqrt{5}} \times \frac{5 + \sqrt{5}}{5 + \sqrt{5}} - \frac{\sqrt{5}}{5} = \frac{20 + 4\sqrt{5}}{20} - \frac{\sqrt{5}}{5} = 1;$<br>AP= $\frac{2 \times 10^8 + 10^7}{7 \times 10^4 \times 10^3} = \frac{2 \times 10^8 + 10^7}{7 \times 10^7} = \frac{10^7 (2 \times 10 + 1)}{7 \times 10^7} = \frac{21}{7} = 3;$ | 1.5  |  |  |
| 2            | AP=AN+NP, then the points A, N and P are collinear.                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5  |  |  |
| Question II  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |  |  |
| <b>1.</b> a  | $\frac{y}{40} = \frac{x}{60} \text{ then } 2x = 3y$<br>OR $\frac{40}{100} (x + y) = y, \frac{40}{100} x - \frac{60}{100} y = 0$ , so $2x = 3y$ .                                                                                                                                                                                                                                                                                                                             | 0.75 |  |  |
| 1.b          | The number of girls exceeds the number of boys by 5.                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.75 |  |  |
| 1.c          | The two equations: $2x = 3y$ and $x = y + 5$ are written as the system: $\begin{cases} 2x - 3y = 0 \\ x - y = 5 \end{cases}$ , the number of girls is 15 and the number of boys is 10.                                                                                                                                                                                                                                                                                       | 0.75 |  |  |
| 2            | The number of boys in section B is 10, let <i>n</i> be the number of girls.<br>So $\frac{4}{9}(n + 10) = n$ . Then, in section B: the number of girls is 8.                                                                                                                                                                                                                                                                                                                  | 0.75 |  |  |
| Question III |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |  |  |
| 1.a          | $S_{1} = L \times w = (3x + 4)(x + 2)$<br>$S_{2} = \frac{h \times b}{2} = \frac{(3x+4)(3x+x+2)}{2} = \frac{(3x+4)(4x+2)}{2} = (3x + 4)(2x + 1)$                                                                                                                                                                                                                                                                                                                              | 1    |  |  |
| 1.b          | $S_2 - S_1 = (3x + 4)(2x + 1) - (3x + 4)(x + 2) = (3x + 4)(x - 1)$                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5  |  |  |
| 1.c          | $S_2 = S_1$ , then $S_2 - S_1 = 0$ , $(3x + 4)(x - 1) = 0$ , $x = -\frac{4}{3}$ (rejected) or $x = 1$ (accepted).<br>If $x = 1$ , FG = GA = 3, then G is the midpoint of [FA], and (KG) is perpendicular to [FA] at G, then (KG) is the perpendicular bisector of [FA].                                                                                                                                                                                                      | 1    |  |  |
| 2.a          | By Pythagoras theorem in the right triangle KGA we have:<br>$KA^2 = KG^2 + GA^2 = (3x + 4)^2 + 9x^2 = 18x^2 + 24x + 16.$                                                                                                                                                                                                                                                                                                                                                     | 0.5  |  |  |
| 2.b          | $(3x-2)(x+2) = 3x^2 + 6x - 2x - 4 = 3x^2 + 4x - 4$ verified.                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5  |  |  |
| 2.c          | KA <sup>2</sup> =40, 18x <sup>2</sup> + 24x + 16 = 40, 18x <sup>2</sup> + 24x - 24 = 0, 6(3x <sup>2</sup> + 4x - 4) = 0.<br>Since $3x^{2} + 4x - 4 = (3x - 2)(x + 2)$ (from (2.b)), then $x = \frac{2}{3}$ (accepted) or $x = -2$ (rej).                                                                                                                                                                                                                                     | 0.5  |  |  |

|             | Question IV                                                                                                                                                                                                                    |      |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| <b>1.</b> a | The coordinates of point A satisfy the equation of (d) $(y_A = x_A + 5)$ then A is on (d).                                                                                                                                     | 0.25 |  |  |
| 1.b         | B is the intersection of (d) with the axis y'Oy so $x_B = 0$ and $y_B = 5$ . B(0; 5)                                                                                                                                           | 0.25 |  |  |
| 1.c         |                                                                                                                                                                                                                                | 0.5  |  |  |
| 2.a         | (d') is perpendicular to (d), slope of (d) × slope of (d') = $-1$ , the equation of the line (d') is: $y = -x + b$ .but (d') passes through B(0; 5) so (d') : $y = -x + 5$ .                                                   | 0.5  |  |  |
| 2.b         | Coordinates of point the E verify the equation of (d').<br>We have $y_E = -x_E + 5$ and $y_E = 0$ , then E is also on the x'Ox axis.                                                                                           | 0.5  |  |  |
| 2.c         | Figure                                                                                                                                                                                                                         | 0.25 |  |  |
| <b>3.</b> a | I is the midpoint of [AE], so $x_I = \frac{x_A + x_E}{2} = 1$ and $y_I = \frac{y_A + y_E}{2} = 1$ , so I(1; 1).<br>Radius of the circle (C): $r = \frac{AE}{2} = \frac{\sqrt{(x_A - x_E)^2 + (y_A - y_E)^2}}{2} = \sqrt{17}$ . | 0.75 |  |  |
| <b>3.</b> b | $IF = \sqrt{17} = r.$                                                                                                                                                                                                          | 0.25 |  |  |
| 3.c         | F is on the circle and [AE] is a diameter, $\widehat{AFE} = 90^\circ$ and $AF = FE = \sqrt{34}$ , so AFE is a is a right isosceles triangle at F.                                                                              | 0.75 |  |  |
| 4           | $\overrightarrow{FI} = \overrightarrow{EL}$ so $x_L - x_E = x_I - x_F$ then $x_L = 6$ similarly $y_L = 4$ .and L(6; 4).                                                                                                        | 0.5  |  |  |
| ٥           | $\overrightarrow{IG} = \overrightarrow{EL} = \overrightarrow{FI}$ so $IG = IF = r$ , then G is on the circle (C).                                                                                                              | 0.5  |  |  |

| Question V |                                                                                                                                                                                                                                                                                                                                                        |      |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1          |                                                                                                                                                                                                                                                                                                                                                        | 0.5  |
| 2          | D is on (C) opposite to the diameter [AB] then $\overline{ADB} = 90^{\circ}$ . By using Pythagoras theorem: $AB^2 = AD^2 + BD^2$ , then $AD = 8$ .                                                                                                                                                                                                     | 0.5  |
| 3.a        | The two triangles ABD and BEF are right triangles and since (AB) and (EF) are<br>parallel, then $\widehat{DBA} = \widehat{BEF}$ (corresponding angles).<br>Then ABD and BEF are similar by two equal angles.<br>The ratio of similarity: $\frac{ABD}{BEF} \Big  \frac{AB}{BE} = \frac{AD}{BF} = \frac{BD}{EF}$ ;                                       | 1    |
| 3.b        | Since E is symmetric of D with respect to B then $BE = DB = 6$ .<br>By ratio of similarity: $\frac{AB}{BE} = \frac{BD}{FE}$ , then $FE = \frac{BD \times BE}{AB} = \frac{6 \times 6}{10} = 3.6$ .<br>$\frac{AB}{BE} = \frac{AD}{BF}$ then $\frac{10}{6} = \frac{8}{4.8}$ <b>OR</b> In the right triangle BEF: $BE^2 = FB^2 + FE^2$ , then $FB = 4.8$ . | 1    |
| 4          | $\overrightarrow{EDG} = 90^{\circ}$ and $\overrightarrow{GFE} = 90^{\circ}$ , then D, G, F and E are on the same circle (C') whose diameter is [GE].                                                                                                                                                                                                   | 0.5  |
| 5.a        | I is the midpoint of [GE] and B is the midpoint of [DE], by the midpoint theorem then (IB) // (DG).                                                                                                                                                                                                                                                    | 0.5  |
| 5.b        | $\widehat{\text{LBD}} = 90^{\circ}(\text{angle opposite to the diameter [LD]}) \text{ and } \widehat{\text{GDB}} = 90^{\circ}, \text{ (LB) // (DG) and}$<br>(IB) // (DG). Then L, B and I are collinear.                                                                                                                                               | 0.5  |
| 6.a        | In the right triangle ABD: $\tan \widehat{BAD} = \frac{BD}{AD} = \frac{6}{8} = 0.75.$<br>In the right triangle ABG: $\tan \widehat{BAD} = \frac{BG}{AB} = \frac{BG}{10}$ .<br>By comparison: $\frac{BG}{10} = 0.75$ then $BG = 7.5.$                                                                                                                   | 0.75 |
| 6.b        | By using Pythagoras theorem in the triangle GFE:<br>$GE^{2}=GF^{2}+FE^{2} = (12.3)^{2} + (3.6)^{2} = \frac{675}{4}, \text{ then } GE = \frac{3\sqrt{73}}{2} \text{ and the radius of the circle}$ $(C'): r'=\frac{GE}{2} = \frac{3\sqrt{73}}{4}$                                                                                                       | 0.75 |