

I- (2 points)

All the steps of calculation must be shown.
Consider three distinct points A, P and N such that:

$$
\mathrm{AN}=3-\frac{1}{5} \times \frac{10}{3}-\frac{1}{3} \quad ; \quad \mathrm{NP}=\frac{4}{5-\sqrt{5}}-\frac{\sqrt{5}}{5} \quad \text { and } \quad \mathrm{AP}=\frac{2 \times 10^{8}+10^{7}}{7 \times 10^{4} \times 10^{3}}
$$

1) Show that AN, NP, and AP are natural numbers.
2) Verify that the three points A, N, and P are collinear.

II- (3 points)

In a school there are two sections for grade 9 , section A and section B.

1) In grade 9 section $A, 40 \%$ of the students are boys.

Let x be the number of girls and y be the number of boys.
a. Show that $2 \mathrm{x}=3 \mathrm{y}$.
b. Knowing that $\mathrm{x}=\mathrm{y}+5$. Write a statement that describes this relation between x and y .
c. Use parts a. and b. to calculate the number of girls and the number of boys in section A.
2) In grade 9 section $B, \frac{4}{9}$ of students are girls while the number of boys in section B is equal to 10 . Calculate the number of girls in section B.

III- (4 points)

In the adjacent figure,

- EFGK is a rectangle
- $\mathrm{EF}=3 \mathrm{x}+4$ and $\mathrm{FG}=\mathrm{x}+2$ with x is a real positive number
- The points F, G and A are collinear such that $A G=3 x$.

Denote by S_{1} the area of the rectangle EFGK and by S_{2} the area of the triangle KFA.

1) a. Calculate S_{1} and S_{2} in terms of x.
b. Show that $S_{2}-S_{1}=(3 x+4)(x-1)$.
c. Calculate x knowing that $S_{2}=S_{1}$.

In this case what does the line (KG) represent for the segment [FA]?
2) a. Calculate $K A^{2}$ in terms of x.
b. Verify that $3 x^{2}+4 x-4=(3 x-2)(x+2)$.

c. Determine x knowing that $K A=2 \sqrt{10}$.

IV- (5 points)

In an orthonormal system of axes $x^{\prime} O x$ and $y^{\prime} O y$, consider the line (d) with equation $y=x+5$ and the point $A(-3 ; 2)$.

1) a. Verify that A is a point on the line (d).
b. Let B be the intersection of (d) with y'Oy. Calculate the coordinates of B.
c. Plot the points A and B. Draw the line (d).
2) Let (d^{\prime}) be the line through B and perpendicular to (d).
a. Write the equation of (d^{\prime}).
b. Verify that the point $E(5 ; 0)$ is the intersection point of (d^{\prime}) with $x^{\prime} o x$.
c. Draw (d').
3) Let (C) be the circle circumscribed about triangle ABE.
a. Calculate the coordinates of point I, the center of (C), and verify that its radius is equal to $\sqrt{17}$.
b. Show that the point $\mathrm{F}(0 ;-3)$ is on the circle (C).
c. Show that the triangle AFE is right isosceles.
4) Let L be the translate of E by the translation with vector $\overrightarrow{\mathrm{FI}}$. Determine the coordinates of L .
5) Let G be the fourth vertex of the parallelogram IELG. Show that G is on the circle (C).

V-(6 points)

In the adjacent figure,

- (C) is a circle with diameter $[\mathrm{AB}]$ such that $\mathrm{AB}=10$
- $\quad \mathrm{D}$ is a point on (C) such that $\mathrm{DB}=6$
- [DL] is a diameter of (C)
- (d) is the tangent to (C) at B
- E is the symmetric of D with respect to B
- F is the orthogonal projection of E on (d).

1) Draw the figure.
2) Calculate $A D$.
3) a. Show that the two triangles $A B D$ and $B E F$ are similar and write the ratio of similarity.
b. Calculate FE and verify that $\mathrm{FB}=4.8$.

4) Let G be the point of intersection of (d) and (AD).

Show that the points D, G, F and E are on the same circle (C^{\prime}) and determine a diameter of (C^{\prime}).
5) Let I be the center of the circle (C^{\prime}).
a. Show that the two lines (IB) and (DG) are parallel.
b. Show the points L, B and I are collinear.
6) a. Calculate $\tan \widehat{B A D}$, and deduce that $\mathrm{BG}=7.5$.
b. Calculate the radius of the circle (C^{\prime}).

	المادة: رياضيات _ لغة إنكليزية الشهادة: المتوسطة نموذج رقم: / / المدّة: ساعتان	الهيئة الأكاديميّة المشتركة قسم: الرياضيات	المركز التربوي للبحوث والإنماء	
سس التصحيح				
	Question I			pts
1	$\begin{aligned} & \mathrm{AN}=3-\frac{1}{5} \times \frac{10}{3}-\frac{1}{3}=3-\frac{2}{3}-\frac{1}{3}=2 ; \\ & \mathrm{NP}=\frac{4}{5-\sqrt{5}}-\frac{\sqrt{5}}{5}=\frac{4}{5-\sqrt{5}} \times \frac{5+\sqrt{5}}{5+\sqrt{5}}-\frac{\sqrt{5}}{5}=\frac{20+4 \sqrt{5}}{20}-\frac{\sqrt{5}}{5}=1 ; \\ & \mathrm{AP}=\frac{2 \times 10^{8}+10^{7}}{7 \times 10^{4} \times 10^{3}}=\frac{2 \times 10^{8}+10^{7}}{7 \times 10^{7}}=\frac{10^{7}(2 \times 10+1)}{7 \times 10^{7}}=\frac{21}{7}=3 ; \end{aligned}$			1.5
2	$\mathrm{AP}=\mathrm{AN}+\mathrm{NP}$, then the points A, N and P are collinear.			0.5
Question II				
1.a	$\begin{aligned} & \frac{y}{40}=\frac{x}{60} \text { then } 2 x=3 y \\ & \text { OR } \frac{40}{100}(x+y)=y, \frac{40}{100} x-\frac{60}{100} y=0 \text {, so } 2 x=3 y . \end{aligned}$			0.75
1.b	The number of girls exceeds the number of boys by 5 .			0.75
$1 . \mathrm{c}$	The two equations: $2 x=3 y$ and $x=y+5$ are written as the system: $\left\{\begin{array}{c}2 x-3 y=0 \\ x-y=5\end{array}\right.$, the number of girls is 15 and the number of boys is 10 .			0.75
2	The number of boys in section B is 10 , let n be the number of girls. So $\frac{4}{9}(n+10)=n$. Then, in section B: the number of girls is 8 .			0.75
Question III				
1.9	$\begin{aligned} & \mathrm{S}_{1}=\mathrm{L} \times \mathrm{w}=(3 \mathrm{x}+4)(\mathrm{x}+2) \\ & \mathrm{S}_{2}=\frac{\mathrm{h} \times \mathrm{b}}{2}=\frac{(3 \mathrm{x}+4)(3 \mathrm{x}+\mathrm{x}+2)}{2}=\frac{(3 \mathrm{x}+4)(4 \mathrm{x}+2)}{2}=(3 \mathrm{x}+4)(2 \mathrm{x}+1) \end{aligned}$			1
1.b	$\mathrm{S}_{2}-\mathrm{S}_{1}=(3 \mathrm{x}+4)(2 \mathrm{x}+1)-(3 \mathrm{x}+4)(\mathrm{x}+2)=(3 \mathrm{x}+4)(\mathrm{x}-1)$			0.5
$1 . \mathrm{c}$	$\mathrm{S}_{2}=\mathrm{S}_{1}$, then $\mathrm{S}_{2}-\mathrm{S}_{1}=0,(3 \mathrm{x}+4)(\mathrm{x}-1)=0, x=-\frac{4}{3}$ (rejected) or $x=1$ (accepted). If $\mathrm{x}=1, \mathrm{FG}=\mathrm{GA}=3$, then G is the midpoint of $[\mathrm{FA}]$, and (KG) is perpendicular to [FA] at G , then (KG) is the perpendicular bisector of [FA].			1
2.9	By Pythagoras theorem in the right triangle KGA we have: $K A^{2}=K G^{2}+G A^{2}=(3 x+4)^{2}+9 x^{2}=18 x^{2}+24 x+16$.			0.5
2.b	$(3 \mathrm{x}-2)(\mathrm{x}+2)=3 \mathrm{x}^{2}+6 \mathrm{x}-2 \mathrm{x}-4=3 \mathrm{x}^{2}+4 \mathrm{x}-4$ verified.			0.5
$2 . \mathrm{c}$	$K^{2}=40,18 x^{2}+24 x+16=40,18 x^{2}+24 x-24=0,6\left(3 x^{2}+4 x-4\right)=0$ Since $3 x^{2}+4 x-4=(3 x-2)(x+2)\left(\right.$ from (2.b)), then $x=\frac{2}{3}($ accepted $)$ or $x=-2$ (rej).			0.5

Question IV		
1.a	The coordinates of point A satisfy the equation of (d) $\left(y_{A}=x_{A}+5\right)$ then A is on (d).	0.25
1.b	B is the intersection of (d) with the axis $\mathrm{y}^{\prime} \mathrm{Oy}$ so $\mathrm{x}_{\mathrm{B}}=0$ and $\mathrm{y}_{\mathrm{B}}=5 . \mathrm{B}(0 ; 5)$	0.25
1.c		0.5
2.a	(d') is perpendicular to (d), slope of $(d) \times$ slope of $\left(d^{\prime}\right)=-1$, the equation of the line (d^{\prime}) is: $y=-x+b$ but $\left(d^{\prime}\right)$ passes through $B(0 ; 5)$ so $\left(d^{\prime}\right): y=-x+5$.	0.5
2.b	Coordinates of point the E verify the equation of (d'). We have $y_{E}=-x_{E}+5$ and $y_{E}=0$, then E is also on the $\mathrm{x}^{\prime} \mathrm{Ox}$ axis.	0.5
$2 . \mathrm{c}$	Figure	0.25
3.a	I is the midpoint of [AE], so $x_{I}=\frac{x_{A}+x_{E}}{2}=1$ and $y_{I}=\frac{y_{A}+y_{E}}{2}=1$, so $I(1 ; 1)$. Radius of the circle (C): $r=\frac{A E}{2}=\frac{\sqrt{\left(\mathrm{x}_{\mathrm{A}}-\mathrm{x}_{\mathrm{E}}\right)^{2}+\left(\mathrm{y}_{\mathrm{A}}-\mathrm{yE}_{\mathrm{E}}\right)^{2}}}{2}=\sqrt{17}$.	0.75
3.b	$\mathrm{IF}=\sqrt{17}=\mathrm{r}$.	0.25
3.c	F is on the circle and $[\mathrm{AE}]$ is a diameter, $\widehat{\mathrm{AFE}}=90^{\circ}$ and $\mathrm{AF}=\mathrm{FE}=\sqrt{34}$, so AFE is a is a right isosceles triangle at F .	0.75
4	$\overrightarrow{\mathrm{FI}}=\overrightarrow{\mathrm{EL}}$ so $\mathrm{x}_{\mathrm{L}}-\mathrm{x}_{\mathrm{E}}=\mathrm{x}_{\mathrm{I}}-\mathrm{x}_{\mathrm{F}}$ then $\mathrm{x}_{\mathrm{L}}=6$ similarly $\mathrm{y}_{\mathrm{L}}=4$. and $\mathrm{L}(6 ; 4)$.	0.5
\bigcirc	$\overrightarrow{\mathrm{IG}}=\overrightarrow{\mathrm{EL}}=\overrightarrow{\mathrm{FI}}$ so IG$=\mathrm{IF}=\mathrm{r}$, then G is on the circle (C).	0.5

Question V		
1		0.5
2	D is on (C) opposite to the diameter [AB] then $\overline{A D B}=90^{\circ}$. By using Pythagoras theorem: $\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$, then $\mathrm{AD}=8$.	0.5
3.a	The two triangles $A B D$ and $B E F$ are right triangles and since $(A B)$ and $(E F)$ are parallel, then $\widehat{\mathrm{DBA}}=\widehat{\mathrm{BEF}}$ (corresponding angles). Then ABD and BEF are similar by two equal angles. The ratio of similarity: ${ }_{\mathrm{BEF}}^{\mathrm{ABD}} \left\lvert\, \frac{\mathrm{AB}}{\mathrm{BE}}=\frac{\mathrm{AD}}{\mathrm{BF}}=\frac{\mathrm{BD}}{\mathrm{EF}}\right.$;	1
3.b	Since E is symmetric of D with respect to B then $\mathrm{BE}=\mathrm{DB}=6$. By ratio of similarity: $\frac{\mathrm{AB}}{\mathrm{BE}}=\frac{\mathrm{BD}}{\mathrm{FE}}$, then $\mathrm{FE}=\frac{\mathrm{BD} \times \mathrm{BE}}{\mathrm{AB}}=\frac{6 \times 6}{10}=3.6$. $\frac{\mathrm{AB}}{\mathrm{BE}}=\frac{\mathrm{AD}}{\mathrm{BF}}$ then $\frac{10}{6}=\frac{8}{4.8}$ OR In the right triangle $\mathrm{BEF}: \mathrm{BE}^{2}=\mathrm{FB}^{2}+\mathrm{FE}^{2}$, then $\mathrm{FB}=4.8$.	1
4	$\widehat{\mathrm{EDG}}=90^{\circ}$ and $\mathrm{GFE}=90^{\circ}$, then $\mathrm{D}, \mathrm{G}, \mathrm{F}$ and E are on the same circle (C^{\prime}) whose diameter is [GE].	0.5
5.a	I is the midpoint of [GE] and B is the midpoint of [DE], by the midpoint theorem then (IB) // (DG).	0.5
5.b	$\overline{\mathrm{LBD}}=90^{\circ}$ (angle opposite to the diameter [LD]) and $\overline{\mathrm{GDB}}=90^{\circ}$, (LB) $/ /(\mathrm{DG})$ and (IB) // (DG). Then L, B and I are collinear.	0.5
6.a	In the right triangle $\mathrm{ABD}: \tan \widehat{B A D}=\frac{B D}{A D}=\frac{6}{8}=0.75$. In the right triangle $\mathrm{ABG}: \tan \widehat{B A D}=\frac{B G}{A B}=\frac{B G}{10}$. By comparison: $\frac{\mathrm{BG}}{10}=0.75$ then $\mathrm{BG}=7.5$.	0.75
6.b	By using Pythagoras theorem in the triangle GFE: $\mathrm{GE}^{2}=\mathrm{GF}^{2}+\mathrm{FE}^{2}=(12.3)^{2}+(3.6)^{2}=\frac{675}{4}$, then $\mathrm{GE}=\frac{3 \sqrt{73}}{2}$ and the radius of the circle (C^{\prime}): $\mathrm{r}^{\prime}=\frac{\mathrm{GE}}{2}=\frac{3 \sqrt{73}}{4}$	0.75

