

يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب السسائل الواردة في السسابقة).

I- (4 points)

In the table below, only one of the proposed answers to each question is correct. Write down the number of each question and give, with justification, the answer corresponding to it.
In these exercise Z and Z ' are two complex numbers

No	Question	a	b	c
1	If Z is real, then an argument for $Z(i Z+\bar{Z})$ is:	$\frac{\pi}{4}$	0	$\frac{\pi}{2}$
2	If $M(Z), M^{\prime}\left(Z^{\prime}\right), A(-1)$ and $B(2 i)$ are 4 points on the complex plane such that $Z^{\prime}=\frac{Z+1}{2 i-Z}$, then $A M^{\prime} \times B M=$	$\sqrt{A B}$	$2 A B$	$A B$
3	If $M(Z), M^{\prime}\left(Z^{\prime}\right)$ and $A(2 i)$ are 3 points on the complex plane such that $Z^{\prime}=\overline{(Z-2 l)^{2}}$ and Z^{\prime} is real negative, then $M(Z)$ moves on:	$y^{\prime} O y$	the line: $y=2$	$x^{\prime} O x$
4	If Z and Z^{\prime} are two nonzero complex numbers such that $Z^{\prime}=\frac{2 i-3}{\bar{Z}}$, then $Z \times \bar{Z}^{\prime}=$	$2 i+3$	$-2 i-3$	$-2 i+3$

II- (4 points)

In the space referred to an orthonormal system $(O ; \vec{\imath}, \vec{\jmath}, \vec{k})$, consider the point $A(1,2,0)$ and the two lines (d) and $\left(d^{\prime}\right)$ with parametric equations:
(d) $\left\{\begin{array}{l}x=t+1 \\ y=2 \\ z=-2 t\end{array}\right.$
and $\quad\left(d^{\prime}\right)\left\{\begin{array}{l}x=-m+4 \\ y=3 \\ z=2 m-1\end{array}\right.$
where m and t are two real parameters.

1- a) Show that A is on (d) but not on (d^{\prime}).
b) Verify that (d) and $\left(d^{\prime}\right)$ are parallel.

2- Let (P) be the plane determined by (d) and ($\left.d^{\prime}\right)$.
Prove that $2 x-5 y+z+8=0$ is an equation of (P).
3- Consider in the plane (P) the circle (C) which is tangent to (d) at A.
a) The center I of circle (C) is on $\left(d^{\prime}\right)$, calculate the coordinates of I.
b) Show that the radius of (C) is equal to $\sqrt{6}$ units of length.

4- (C) intersects $\left(d^{\prime}\right)$ at E and F, and (Δ) is the line passing through A and perpendicular to (P).
a) Verify that, for any point L on (d) the area of triangle LEF is a constant to be calculated.
b) Write the parametric equations for (Δ).
c) Determine a point B on (Δ) so that the volume of tetrahedron $B L E F$ is equal to $2 \sqrt{30}$ units of volume.

III- (4 points)

An urn contains 3 white balls and 7 black balls.
A game runs as follows:
The player chooses randomly one ball from this urn.
If this ball is black, then the game ends.
If the ball is white, then the player does not replace it back in the urn and he chooses a second ball.
This process will continue until a black ball is chosen and the game ends.
The player wins 10000 LL for each white ball and nothing for the black ball.

Part A

1- Calculate the probability that the player wins exactly 10000 LL.
2- Calculate the probability that the player wins at least 10000 LL .
3- Knowing that the first chosen ball is white, what is the probability that he wins 30000 LL?

Part B

Let X be the random variable that is equal to the amount gained by the player.
1- Find the four possible values of X .
2- Prove that $\mathrm{P}(\mathrm{X}=30000)=\frac{1}{120}$.
3- Find the probability distribution and the expected value of X .
4- Suppose that there are 10 players during each day of April. Calculate the expected total amount gained by all the players.

IV- (8 points)

Part A

Consider the function g defined over \mathbb{R} as $g(x)=1+(1-x) e^{x}$.
1- a) Determine $\lim _{x \rightarrow-\infty} g(x)$ and $\lim _{x \rightarrow+\infty} g(x)$.
b) Calculate $g^{\prime}(x)$ and set up the table of variations of g.

2- a) Prove that the equation $g(x)=0$ has only one root α, then verify that $1.27<\alpha<1.28$.
b) Discuss according to the values of x, the sign of $g(x)$.

Part B

Consider the function f defined over \mathbb{R} as: $f(x)=(2-x) e^{x}+x-2$, and denote by (C) its representative curve in an orthonormal system ($\mathrm{O}, \vec{\imath}, \vec{\jmath}$).

1- a) Determine $\lim _{x \rightarrow+\infty} f(x)$ and calculate $f(2.5)$.
b) Determine $\lim _{x \rightarrow-\infty} f(x)$ and prove that the straight line (d) with equation $y=x-2$ is an asymptote to (C).
c) Study the relative positions of (C) \& (d).

2- a) Verify that $f^{\prime}(x)=g(x)$, then set up the table of variations of f.
b) Show that $f(\alpha)=\frac{(\alpha-2)^{2}}{\alpha-1}$.

3- Show that the origin is an inflection point for (C).
4- Draw (C) and (d).
5- Denote by A the area bounded by (C), (d), (yy') and the line with equation $x=\alpha$. Show that $A=\frac{6-4 \alpha}{\alpha-1}$ units of area.

