المادة: رياضيات – لغة إنكليزية الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم: ١ / ٢٠١٩ المدّة: ساعتان	الهيئة الأكاديميّة المشتركة قسم: الرياضيات	المركز التربوي للبحوث والإنماء
- 1-1 1	1 1 1 1 1 . 1 · · · · · · · · · · · · ·	

ملاحظة: يُسمح باستعمال الة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (4 points)

In the space referred to a direct orthonormal system $(O, \vec{i}, \vec{j}, \vec{k})$, consider the plane (P) with equation:

x + y + z - 1 = 0, and the straight lines (d) and (d') with equations: $(d)\begin{cases} x = t - 1 \\ y = t + 1 \\ z = -2t + 1 \end{cases} \text{ and } (d')\begin{cases} x = -1 \\ y = m + 1 \\ z = 2m - 2 \end{cases} \text{ where } m \text{ and } t \text{ are two real parameters.}$

- 1- a) Verify that (d) is contained in (P).
 - b) Calculate the coordinates of I, the meeting point of (d') and (P).
 - c) Show that (d) and (d') are noncoplanar (skew).
- 2- Let (Q) be the plane containing (d') and perpendicular to (P), and denote by (Δ), the intersection line of (P) and (Q).
 - a) Show that x 2y + z + 5 = 0 is an equation of (Q).
 - b) Write a system of parametric equations for (Δ).
 - c) Show that (d) and (Δ) intersect at E(0, 2, -1).
- 3- Let F be the point on (d) so that \overrightarrow{IE} . $\overrightarrow{IF} = \frac{1}{2}$.
 - a) Calculate the coordinates of F.
 - b) Show that *IEF* is a semi equilateral triangle.

II- (4 points)

In the complex plane referred to a direct orthonormal system $(0; \vec{u}, \vec{v})$, consider the points M(Z), M'(Z'), I(1+2i), and E(5). The complex numbers Z and Z' are so that: Z' = 2iZ + 5.

- 1- a) If Z is pure imaginary, prove that Z' is real.
 - b) If $Z' = 5i\sqrt{3}$, write Z in exponential form.
- 2- a) Prove that $Z_{\overline{IM'}} = 2iZ_{\overline{IM'}}$.
 - b) Express IM' in terms of IM and show that $(\overline{IM}, \overline{IM'}) = \frac{\pi}{2} + 2k\pi$ where $k \in \mathbb{Z}$.
 - c) Deduce that if *M* moves on the line (Δ) with equation (x = 1), then *M'* moves on a line whose equation is to be determined.
- 3- Let Z = x + iy and Z' = x' + iy' where x, y, x', and y' are real numbers.
 - a) Express x' and y' in terms of y and x.
 - b) If x + 2y = 5, prove that (MM') is parallel to (y'y). Then use the result $(\overline{IM}, \overline{IM'}) = \frac{\pi}{2} + 2k\pi$ to construct *M*'when x + 2y = 5.
 - c) If M' moves on the circle (C') with center E and radius 2, prove that M moves on the circle (C) with center O and radius 1.

III- (4 points)

Below are the results of a survey conducted on a sample of 500 persons:

- 70% of the persons are women
- 300 of the women are on diet
- 80% of the participants in the survey are on diet.
- A) A person is chosen randomly from the above sample. Consider the following events:
 W: "the chosen person is a woman"
 D: "the chosen person is on diet"
- 1- Prove that $P(D/W) = \frac{6}{7}$.
- 2- a) Calculate $P(D \cap W)$, and deduce $P(D \cap \overline{W})$. b) Prove that $P\left(\frac{D}{\overline{W}}\right) = \frac{2}{3}$.
- 3- Knowing that the chosen person is not on diet, prove that the probability that this person is a man is 0.5.
- B) In this part, two persons are chosen randomly and simultaneously from the group of persons that **are not on diet**. Let *X* be the random variable that is equal to the number of men chosen.
- 1- Prove that $P(X=2) = \frac{49}{198}$.
- 2- Determine the probability distribution of *X*.
- 3- If X designates the number of women chosen, would the probability distribution change? Justify.

IV- (8 points)

Let *f* be the function defined over \mathbb{R} as $f(x) = 2 - \frac{4e^x}{1+e^x}$. Denote by (*C*) its representative curve in

an orthonormal system (0; \vec{i}, \vec{j}).

1- a) Determine $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to +\infty} f(x)$, then deduce that (C) has two asymptotes.

b) Prove that f is an odd function and interpret graphically the result thus obtained.

- 2- a) Calculate f'(x) and set up the table of variations of f.
 - b) Write an equation of (T), the tangent to (C) at O.
 - c) Draw (T) and (C).
- 3- a) Prove that f has an inverse function g.
 - b) Determine the domain of definition of g, then express g(x) as function of x.
 - c) Prove that the graph (C') of g is tangent at O to (C). Then draw (C') in the same system as that of (C).
- 4- Let (D) be the region bounded by (C'), (y'y) and the line with equation y = a where a > 0.
 - a) Calculate in terms of a the area of (D).
 - b) Calculate a so that this area is equal to 4Ln2 unit of area.

المادة: رياضيات - لغة إنكليزية الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم: ١ / ٢٠١٩ المدة: ساعتان	الهيئة الأكاديميّة المشتركة قسم: الرياضيات	المركز التربوي للبحوث والإنماء

	أسس التصحيح		
QI	Answers	Pts	
1-a	Substitute parametric equations of (d) in (P). $t-1+t+1-2t+1-l=0$ then (d) \subset (P)	0.25	
1-b	Substitute parametric equations of (d') in (P). $-l + m + l + 2m - 2 - l = 0$ then $m = 1$, and (d') intersects (P) at $I(-1,2,0)$.	0.5	
1-c	$\vec{V}_{d} \neq \alpha \vec{V}_{d'}$ skew or intersecting, but <i>I</i> is in (<i>P</i>) and belongs to(<i>d'</i>) but does not belong to (<i>d</i>) then (<i>d</i>) & (<i>d'</i>) are skew. Or solve system of 3 equations with two unknowns "no solution"	0.5	
2-a	Substitute parametric equations of (d') in (Q). $-1-2m-2+2m-2+5=0$ then (d') \subset (Q) $\vec{N}_{(Q)}$. $\vec{N}_{P}=0$ then they are perpendicular. Or \vec{IM} . $(\vec{V}_{d'} \times \vec{n}_{(p)}) = 0$	0.5	
2-b	$\vec{V}_{(Q)}. N_{P} = 0 \text{ then they are perpendicular. Or } IM. (V_{d'} \times n_{(p)}) = 0$ $\vec{V}_{(\Delta)} = \vec{N}_{(P)} \times \vec{N}_{(Q)} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 1 \\ 1 & -2 & 1 \end{vmatrix} = 3\vec{i} - 3\vec{k} \text{ and } I \in (\Delta) \text{ then } \overline{IM} = \alpha \vec{V}_{(\Delta)}.$ $(\Delta): \begin{cases} x = 3\alpha - 1 \\ y = 2 \\ z = -3\alpha \end{cases}$	0.5	
2-c	Substitute coordinates of <i>E</i> in (<i>d</i>). then $t=1 \Rightarrow E \in (d)$. and for $\alpha = \frac{1}{3}E \in (\Delta)$.	0.5	
3-a	$F \in (d) \Rightarrow F(t-1,t+1,-2t+1), \overrightarrow{IF}(t,t-1,-2t+1), \overrightarrow{IE}(1,0,-1)$ $\overrightarrow{IF}.\overrightarrow{IE} = \frac{1}{2} \Rightarrow t = \frac{1}{2} \Rightarrow F(\frac{-1}{2},\frac{3}{2},0),$	0.5	
3-b	$\overrightarrow{IF}\left(\frac{1}{2},\frac{-1}{2},0\right) \text{ and } \overrightarrow{IF}.\overrightarrow{IE} = \frac{1}{2} \text{ then } IE.IFcos(\overrightarrow{IF},\overrightarrow{IE}) = \frac{1}{2} \text{ so } cos(\overrightarrow{IF},\overrightarrow{IE}) = \frac{1}{2} \text{ then } \widehat{EIF} = \frac{\pi}{3} \text{ and}$ $\overrightarrow{FE}\left(\frac{1}{2},\frac{1}{2},-1\right), \ \overrightarrow{FI}.\overrightarrow{FE} = 0 \text{ then } \widehat{IFE} = \frac{\pi}{2} \text{ Thus } IEF \text{ is a semi equilateral triangle right at F.}$	0.75	

QII	Short Answers	Pts
1-a	If Z is pure imaginary, then $Z = yi$ where y is a nonzero real number. Z' = 2i(yi) + 5 = 5 - 2y which is real.	
1-b	$Z' = 5i\sqrt{3} \text{ then } Z = \frac{5i\sqrt{3}-5}{2i} = \frac{5\sqrt{3}}{2} + \frac{5}{2}i = 5e^{\frac{\pi}{6}i}$	
2-a	$Z_{\overline{IMi}} = Z' - Z_I = 2iZ + 4 - 2i = 2i(Z - 1 - 2i) = 2iZ_{\overline{IM}}$	0.25
2-b	$\frac{Z_{\overrightarrow{IM'}}}{Z_{\overrightarrow{IM'}}} = 2i$ then: $IM' = 2IM$ and $(\overrightarrow{IM}, \overrightarrow{IM'}) = \frac{\pi}{2} + 2k\pi$	0.5
2-c	M moves on a line (Δ) passing through I, and $(\overrightarrow{IM}, \overrightarrow{IM'}) = \frac{\pi}{2} + 2k\pi$ then <i>M</i> 'moves on a straight line (L) passing through I and \perp (Δ) with an equation (L) : y=2.	0.5
3-a	x' + iy' = 2i(x + iy) + 5 = 5 - 2y + 2xi. x' = 5 - 2y and y' = 2x.	0.5
3-b	If $x + 2y = 5$, then $x = 5 - 2y$ and $x' = x$ so $(MM') \nearrow (y'y)$. Since M is the point on the line (d) with equation $x + 2y = 5$ and passing through I . Then M' is the point of intersection between the perpendicular to (d) drawn through I and line through M and parallel to $(y'y)$.	0.75
3-с	$EM' = 2 \implies (x'-5)^2 + {y'}^2 = 4 \implies x^2 + y^2 = 1 \implies M$ moves on the circle (C) of center O & radius 1.	0.5

Q III	Answers	Pts	
A-1	The number of women is $0.7 \times 500 = 350$.		
	The number of women that are on diet is 300, thus $P(D/W) = \frac{1}{350} = \frac{1}{7}$		
A-2a	2a $P(D \cap W) = P(W) \times P(D/W) = 0.7 \times \frac{6}{7} = 0.6$		
	$P(D) = P(W \cap D) + P(\overline{W} \cap D); 0.8 = 0.6 + P(\overline{W} \cap D) \text{ so } P(\overline{W} \cap D) = 0.2$ $P\left(\frac{D}{\overline{W}}\right) = \frac{P(\overline{W} \cap D)}{P(\overline{W})} = \frac{0.2}{0.3} = \frac{2}{3}$		
A-2b	1	0.5	
A-3	$P(D/\bar{W}) = \frac{2}{3} \text{ and } P(\bar{D}/\bar{W}) = \frac{1}{3} \text{ then } P(\bar{W}/\bar{D}) = \frac{P(\bar{W}\cap\bar{D})}{P(\bar{D})} = \frac{0.3 \times \frac{2}{3}}{0.2} = \frac{1}{2}$	0.75	
B-1	$P(X=2) = \frac{C_{50}^2}{C_{100}^2} = \frac{49}{198}$	0.5	
B-2	$P(X=0) = \frac{C_{50}^2}{C_{100}^2} = \frac{49}{198}; P(X=1) = \frac{C_{50}^1 \times C_{50}^1}{C_{100}^2} = \frac{50}{99}$	0.75	
B-3	The probability distribution of <i>X</i> would not change since the number of women who are not on diet is the same as that of men.	0.25	
Q IV	Answers	Pts	
1	$\lim_{x \to -\infty} f(x) = 2 \text{ then } y = 2 \text{ H.A.}$	1	
1-a	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 2 - \frac{4}{1 + e^{-x}} = \lim_{x \to +\infty} 2 - 4 = -2 \text{ then } y = -2 \text{ H.A.}$	1	
	The domain is centered at 0 and $f(-x) = 2 - \frac{4e^{-x}}{1+e^{-x}} = 2 - \frac{4}{1+e^{x}} = \frac{2e^{x}-2}{1+e^{x}}$		
1-b	$-f(x) = -2 + \frac{4e^x}{1+e^x} = \frac{2e^x-2}{1+e^x} = f(-x)$; then(O) is the center of symmetry of (C).	0.75	
	$-f(x) = -2 + \frac{4e^x}{1+e^x} = \frac{2e^x - 2}{1+e^x} = f(-x); \text{ then}(O) \text{ is the center of symmetry of (C).}$ $f'^{(x)} = \frac{-4[e^x(e^x+1) - e^x e^x)]}{(1+e^x)^2} = \frac{-4e^x}{(1+e^x)^2} < 0 \qquad \boxed{x -\infty +\infty}$		
2-a	$f'^{(x)} = \frac{1}{(1+e^{x})^2} = \frac{1}{(1+e^{x})^2} < 0 \qquad \qquad \frac{x}{f'} = \frac{1}{(1+e^{x})^2} < 0$	0.75	
2-b	y - f(0) = f'(0)(x - 0) then $y = -x$.	0.25	
2-с		1	
3-a	f is continuous and strictly decreasing over \mathbb{R} then it admits an inverse g.		
3-b	$D_g = R_f =] -2, 2[; y = 2 - \frac{4e^x}{1+e^x} \Longrightarrow y + ye^x = 2 + 2e^x - 4e^x so \ e^x(y+2) = 2 - y$ then $e^x = \frac{2-y}{2+y} \Longrightarrow x = Ln(\frac{2-y}{2+y}) \Longrightarrow g(x) = Ln(\frac{2-x}{2+x})$	1.25	
3-с	The tangent to (<i>C</i>) at <i>O</i> is symmetric to itself with respect to $y=x$, thus it is tangent to (<i>C'</i>), which means that (<i>C'</i>) is tangent to (<i>C</i>) at <i>O</i> .(<i>C'</i>) see figure.	0.75	
4-a	$A = \int_{0}^{a} \left(-2 + \frac{4e^{x}}{1 + e^{x}} \right) dx = 4Ln(1 + e^{x}) - 2x]_{0}^{a} = 4Ln(1 + e^{a}) - 4Ln2 - 2a \text{ unit of area.}$		
4-b	$4Ln(1+e^{a}) - 4Ln2 - 2a = 4Ln2 \Longrightarrow 2Ln\left(\frac{1+e^{a}}{4}\right) = a \text{ then } e^{2a} - 14e^{a} + 1 = 0 \text{ then } a = Ln(7+4\sqrt{3})$	1	