المادة: رياضيات ـ لغةّ إنكليزية الشهادة: الثانويـة العامة الفرع: العلوم العامة نموذج رقم: 1/ 2019 المدّة: اريع ساعات	الهيئة الأكاديميّة المشتركة قسم: الرياضيات	المركز التتربوي للبحوث والإنماء

I- (1.5 point)

Answer true or false and explain.

1) Let z be a complex number, if $z=r e^{i \theta}$ with $r>0$ and $0<\theta<\frac{\pi}{2}$, and $z^{\prime}=\frac{-\bar{z}^{2}}{i \sin \theta \cos \theta}$, then $\frac{\pi}{2}+\theta$ is an argument of z^{\prime}.
2) If a complex number $z \neq-i$ is so that $\left|\frac{2 z-4 i}{\bar{z}-i}\right|=2$, then z is real.
3) The solution set of the inequality $\ln \left(e^{-2 x}-2 e^{-x}+1\right) \leq 0$ is $[-\ln 2 ;+\infty[$.
4) If g is the function defined as $g(x)=\ln x$ and f is another function so that $\left.D_{f}=\right]-\infty, 1[$. Then the domain of definition of the function $f o g$ is $] 0, e[$.
5) If $I_{n}=\int_{0}^{1} x^{n} e^{x} d x$, then $I_{n+1}=e-(n+1) I_{n}$.

II- (2.5 point)

In the space referred to a direct orthonormal system $(0 ; \vec{i}, \vec{j}, \vec{k})$, consider the points $E(1,-1,2)$,
$F(0,-6,0), L(3,-1,1)$ and the line (d) with equations $\left\{\begin{array}{l}x=2 m+1 \\ y=-1 \\ z=-m+2\end{array}\right.$ where m is a real parameter.
Let (P) be the plane determined by O and (d) and let (Δ) be the line through F and parallel to (d).

1) a- Verify that E and L are on (d).
b-Show that $x+5 y+2 z=0$ is an equation of (P).
2) Write the parametric equations for the line (Δ).
3) Denote by (Q) the plane determined by (d) and (Δ).
a-Calculate $\overrightarrow{F E} \wedge \overrightarrow{F L}$, then deduce a normal vector to (Q).
b-Verify that (P) and (Q) are perpendicular.
c- Prove that F is the orthogonal projection of E on (Δ).
4) Consider in the plane (Q) the parabola (C) with focus F and directrix (d).

Determine the coordinates of A and B, the meeting points of (C) and (Δ).
5) Show that the volume of tetrahedron $A O E L$ is equal to the volume of tetrahedron $F O E L$, then calculate this volume.

III- (2 point)

Consider two urns:
Urn U contains 10 cards: 3 marked with letter A; 5 marked with letter B; and 2 marked with letter C.
Urn V contains 6 balls: 2 of them are red and 4 are green.

Part A

A player plays a game according to the following rules:
The player starts the game by drawing one card from U .

- If the card is marked A , then he draws two balls from V one after another with replacement
- If the card is marked B, then he draws two balls from V one after another without replacement
- If the card is marked C , then one red ball is added to urn V , and the player draws two balls simultaneously from V .

The player wins the game if the two balls drawn from V are red.
Consider the events:
A: The card drawn from U is marked A.
B : The card drawn from U is marked B.
C : The card drawn from U is marked C .
G: The player wins the game.

1) Calculate $P(G / A)$. Deduce that $P(G \cap A)=\frac{1}{30}$.
2) Prove that $P(G \cap C)=\frac{1}{35}$.
3) Prove that $P(G)=\frac{2}{21}$.
4) Assume that the player lost the game, find the probability that a card marked A or B was selected from U.

Part B.

In this part, consider only urn V, and assume that n red balls $(\mathrm{n} \geq 1)$ are added to it, then two balls are drawn simultaneously from urn V.

Consider the event D: The two balls have distinct colors.

1) Show that $P(D)=\frac{8(n+2)}{n^{2}+11 n+30}$.
2) Can you find n so that the probability of selecting two balls of the same color is equal to that of selecting two balls with different colors? Justify.

IV- (4 point)

In the next figure,

- Triangle $A B C$ is right at A
- $A B=2, A C=4$
- $[A E]$ is an altitude in the triangle $A B C$
- Let S be the similitude that maps A onto B and E onto C

Part A.

1) Determine an angle of S and show that its scale factor is $\frac{5}{2}$.
2) Let $F=S(B)$ and $L=S(C)$.
a-Construct F.
b-Show that L is the meeting point of $(C F)$ and $(A B)$.

3) a-Construct $(d)=S(A F)$, then determine $S(d)$.
b-Deduce that the center I of S is the meeting point of (d) and $(A F)$.
4) Let h be the dilation that maps F onto A and B onto C.
a-Determine the center J of h, then verify that the scale factor of h is $-\frac{4}{5}$.
b-Construct $G=h(L)$.
5) a-Determine the nature of Soh.
b-Show that C is the center of Soh.
c-Deduce that E is the center of $h o S$.

Part B

The complex plane is referred to the system $(A ; \vec{u}, \vec{v})$ with $\vec{u}=\frac{1}{2} \overrightarrow{A B}$ and $\vec{v}=\frac{1}{4} \overrightarrow{A C}$.

1) a-Write the complex form of $h o S$.
b-Deduce z_{E}.
2) Determine $h o S(C)$, then find z_{G}.
3) Determine the nature of the quadrilateral $L A G C$.

V- (4 point)

In the complex plane $(O ; \vec{u}, \vec{v})$, consider the points M, M^{\prime}, I and B so that $z_{M}=z, z_{M}=z^{\prime}, \quad z_{I}=1$ and $z_{B}=-1$.
The two complex numbers z and z^{\prime} are so that $z^{\prime}=z^{2}-2 z$.

1) a) Verify that: $\left(z^{\prime}+1\right)=(z-1)^{2}$.
b) If M moves on a circle (C) with center I and radius IB, prove that M^{\prime} moves on a circle (C^{\prime}) with center and radius to be determined.
2) Let $z=x+i y$ and $z^{\prime}=x^{\prime}+i y^{\prime}$, where x, y, x^{\prime} and y^{\prime} are real numbers.
a-Show that $x^{\prime}=x^{2}-y^{2}-2 x$ and $y^{\prime}=2 y(x-1)$.
b -Write a relation between x and y so that z^{\prime} is pure imaginary.
3) a- if z^{\prime} is pure imaginary, prove that M moves on a rectangular hyperbola (H) with center I.
b-Determine the vertices and the asymptotes of (H).
c-Draw (H).
4) Consider the two points L and G so that: $z_{L}=i \sqrt{3}$ and $z_{G}=1+\frac{\sqrt{6}}{2}+i \frac{\sqrt{2}}{2}$.
a- Show that z_{L} and z_{G} satisfy the relation $z_{L}+1=\left(z_{G}-1\right)^{2}$.
b- Deduce that G is on (H).
c- Prove that the tangent at G to (H) is parallel to $(B L)$.
5) Let (E) be the ellipse with vertices $\mathrm{O}, A(2,0)$ and $K(1,3)$.
a-Write an equation of (E).
b-Prove that (E) is tangent to $(B L)$ at J so that $x_{J}=\frac{1}{2}$.
6) The lines $(B L)$ and $(I K)$ intersect at P.

Calculate the area of the region inside the triangle $(B I P)$ and outside (E).

VI- (6 point)

Part A.

Let g be the function defined over $] 0,+\infty[$ as $g(x)=x+\ln x-1$.

1) a- Determine $\lim _{x \rightarrow 0^{+}} g(x)$ and $\lim _{x \rightarrow+\infty} g(x)$.
b- Calculate $g^{\prime}(x)$ and set up the table of variations of g.
2) Calculate $g(1)$, then discuss according to x the sign of $g(x)$.

Part B.

Let f be the function defined over $] 0,+\infty\left[\right.$ as $f(x)=\left(\frac{1}{x}-1\right) \ln x$.
Denote by (C) its representative curve in an orthonormal system $(0 ; \vec{\imath}, \vec{\jmath})$.

1) a- Determine $\lim _{x \rightarrow 0^{+}} f(x)$ and $\lim _{x \rightarrow+\infty} f(x)$. Deduce an asymptote to (C).
b- Determine $\lim _{x \rightarrow+\infty} \frac{f(x)}{x}$. Interpret graphically the result obtained.
2) a-Show that $f^{\prime}(x)=\frac{-g(x)}{x^{2}}$, then set up the table of variations of f. b-Draw (C).
3) a- For $x \in] 0,1]$, prove that f has an inverse function h.
b-Determine the domain of h, then draw the graph $\left(C^{\prime}\right)$ of h in the same system as that of (C).
4) Let A be the area of the region bounded by (C^{\prime}), $y^{\prime} y$ and the line (d) with equation $y=\alpha$ where $0<\alpha<1$. Determine α so that $A=(\alpha-\alpha \ln \alpha)$ units of area.
5) Let p be the function defined as $p(x)=\ln (\alpha-h(x))$ with $\alpha=e^{-\sqrt{2}}$.
a-Prove that the domain of definition p is $]-\infty ; \sqrt{2}\left(1-e^{\sqrt{2}}\right)[$.
b-Determine the limits of p at the boundaries of its domain.

Part C.

Let $\left(U_{n}\right)$ be the sequence defined as $U_{n}=e^{f(n)}$ with $n \in \mathbb{N}$ and $n \geq 1$.

1) a-Show that $\left(U_{n}\right)$ is strictly decreasing
b- Show that $\left(U_{n}\right)$ has a lower bound.
c- Deduce that $\left(U_{n}\right)$ is convergent, then find its limit.
2) Show that $U_{n}=n^{\frac{1-n}{n}}$.

QI	Answers	pts
1-	$\operatorname{Arg}\left(z^{\prime}\right)=\pi-2 \theta-\frac{\pi}{2}=\frac{\pi}{2}-2 \theta[2 \pi] \quad$ (F).	0.5
2-	$\|z-2 i\|=\|\bar{z}-i\|$ then $x^{2}+(y-2)^{2}=x^{2}+(y+1)^{2}$ therefore $y=\frac{1}{2}(\mathrm{~F})$.	0.5
	$e^{-2 x}-2 e^{-2 x}+1>0$ then $\left(e^{-x}-1\right)^{2}>0$ therefore $x \neq 0$ and	
3-	$e^{-2 x}-2 e^{-x}+1 \leq 1$ then $e^{-x}\left(e^{-x}-2\right) \leq 0$ thus $x \geq-\ln 2$.	1
	$\mathrm{D}=[-\ln 2 ; 0[\mathrm{U}] 0 ;+\infty[. \quad(\mathrm{F})$.	0.5
4-	$x \in D_{g}$ then $x>0$ and $\ln x<1 ; x<e$. $\left.D_{f o g}=\right] 0, e[\quad(\mathrm{~T})$.	0.5
5-	$I_{n+1}=e-(n+1) I_{n} \quad$ (Integration by parts) $\quad(\mathrm{T})$.	

QIII	Answers	pts
$\mathbf{1 - a})$	For $m=0, E(1,-1,2)$ is on (d) and for $m=1, L(3,-1,1)$ is on (d).	0.5
b)	$\overrightarrow{O M} \cdot\left(\overrightarrow{O E} \wedge \overrightarrow{V_{d}}\right)=0 ; x+5 y+2 z=0$	0.5
2-	$(\Delta): x=2 k, y=-6, z=-k$ where k is real.	0.5
3-a-	$(Q)=(L E F)$ and $\overrightarrow{n_{Q}}=\overrightarrow{F E} \wedge \overrightarrow{F L}=-5 \vec{i}+5 \vec{j}-10 \vec{k}$	0.5
b-	$\overrightarrow{n_{P}} \cdot \overrightarrow{n_{Q}}=0$ then (P) is perpendicular to (Q).	0.25
c-	F is on (Δ) and $\overrightarrow{F E} \cdot \overrightarrow{V_{\Delta}}=0$	0.75
	A and B are on (C), then $A F=B F=F E=\sqrt{30}$ Therefore $5 k^{2}=30 ; k^{2}=6$ and $k= \pm \sqrt{6}$ $A(2 \sqrt{6},-6,-\sqrt{6})$ and $B(-2 \sqrt{6},-6, \sqrt{6})$	1
4)	(
$\mathbf{5})$	(Δ) is parallel to (P) then for any point M on (Δ) the volume of $M O E L$ is the same.	1

QIII	Answers	pts
1-	Part A .	$P(G / A)=\frac{2}{6} \times \frac{2}{6}=\frac{1}{9}$.
	$P(G \cap A)=P(A) \times P(G / A)=\frac{3}{10} \times \frac{1}{9}=\frac{1}{30}$.	0.5
2-	$P(G \cap C)=P(C) \times P(G / C)=\frac{2}{10} \times \frac{C_{3}^{2}}{C_{7}^{2}}=\frac{1}{35}$.	0.5
3-	$P(G \cap B)=P(B) \times P(G / B)=\frac{5}{10} \times \frac{2}{6} \times \frac{1}{5}=\frac{1}{30}$	
	$P(G)=\frac{1}{30}+\frac{1}{35}+\frac{1}{30}=\frac{1}{15}+\frac{1}{35}=\frac{7+3}{105}=\frac{10}{105}=\frac{2}{21}$.	1
4-	$P((A \cup B) / \bar{G})=\frac{P[(A \cup B) \cap \overline{G]}}{P(\bar{G})}=\frac{P(A \cap \bar{G})+P(B \cap \bar{G})}{P(\bar{G})}=\frac{\frac{3}{10} \times \frac{8}{9}+\frac{5}{10} \times \frac{14}{15}}{\frac{19}{21}}=\frac{11}{15} \frac{19}{21}$	$\frac{77}{95}$.
1-	$P(D)=P($ two different colors $)=\frac{4(n+2)}{C_{n+6}^{2}}=\frac{8(n+2)}{n^{2}+11 n+30}$	1
2-	$P(\bar{D})=1-P(D)$ then $\frac{16(n+2)}{n^{2}+11 n+30}=1$ no solutions.	0.5

QIV	Answers	pts
	Part A.	
1-	$(\overrightarrow{A E}, \overrightarrow{B C})=\frac{\pi}{2}+2 k \pi ; K=\frac{B C}{A E}=\frac{E C+E B}{A E}=\tan \hat{B}+\tan \hat{C}=2+\frac{1}{2}=\frac{5}{2}$	0.75
2-a)	$\mathrm{F}=$ The intersection of the perpendicular at C to $(B C)$ and the perpendicular at B to (AB).	0.5
b)	Since ($C L)$ is \perp to $(E C)$ and (BL) is \perp to (AC) then $L=(A B) \cap(C F)$.	0.5
3-a)	(d) = line through B and perpendicular to $(A F) ; S(d)=(A F)$.	0.5
b)	$S((d) \cap(A F))=S(d) \cap S(A F)=(A F) \cap(d)=I$ (center)	0.5
4-a)	J is on $(B C) \&(A F)$ therefore $J=(B C) \cap(A F) ; \overrightarrow{A C}=k \overrightarrow{F B}$ but $F B=\frac{5}{2} A B=5 ; \mathrm{k}=-\frac{4}{5}$;	1
b)	$G=(L J) \cap$ parallel through C to $(A B)$.	0.5
5-a)	Soh $=S^{\prime}\left(?, \frac{4}{5} \times \frac{5}{2}=2,-\pi+\frac{\pi}{2}=-\frac{\pi}{2}\right)$	0.5
b)	C is on $(F L)$ and $h(F L)=(A G)$ then $h(C)=E$, but $S(E)=C$ therefore $\operatorname{Soh}(C)=C$ C center of Soh.	0.75
c)	$C \xrightarrow{h} E \xrightarrow{s} C$ then $E \xrightarrow{s} C \xrightarrow{h} E$ hence, E center of $h o S$.	0.5
	Part B .	
1-a)	$\begin{aligned} & h o S\left(E, 2,-\frac{\pi}{2}\right) \quad ; z^{\prime}=-2 i z+b . \\ & h o S(A)=C \text { then } 4 \mathrm{i}=0+b \text { and } z^{\prime}=-2 i z+4 i . \end{aligned}$	0.5
b)	$z_{E}(1+2 i)=4 i$ then $z_{E}=\frac{8}{5}+\frac{4}{5} i$	0.5
2	$\begin{aligned} & h o S(C)=h(S(C)=h(L)=G . \\ & z_{G}=-2 i z_{C}+4 i=-2 i(4 i)+4 i=8+2 i \end{aligned}$	0.5
3-	$(A G)=h(F L)$ then $(A G)$ is parallel to $(C L)$ and since $(C G)$ is parallel to $(A B)$ thus $L A G C$ is a parallelogram.	0.5

QV	Answers	Pts
$\mathbf{1 - a)}$	$z^{\prime}=z^{2}-2 z=(z-1)^{2}-1$ then $z^{\prime}+1=(z-1)^{2}$.	0.5
$\mathbf{b)}$	$I M=2$, then $B M^{\prime}=4$ and M^{\prime} moves on the circle with center B and radius 4.	0.5
2-a)	$z=x+i y$ and $z^{\prime}=x^{\prime}+i y^{\prime}$ then $x^{\prime}=x^{2}-y^{2}-2 x$ and $y^{\prime}=2 y(x-1)$.	0.5
b)	z^{\prime} pure imaginary, then $x^{2}-y^{2}-2 x=0$ and $y(x-1) \neq 0 .(y \neq 0, x \neq 1$.	0.5
3-a)	$(x-1)^{2}-y^{2}=1$, equation of rectangular hyperbola with center $I(1,0)$.	0.75
b)	Vertices $O(0,0)$ and $A(2,0)$. Asymptotes: $y=x-1$ and $y=-x+1$.	1
4-a)	$z_{L}+1=1+i \sqrt{3}$. $\left(z_{G}-1\right)^{2}=\left(\frac{\sqrt{6}}{2}+\frac{i \sqrt{2}}{2}\right)^{2}=1+i \sqrt{3}=z_{L}+1$.	0.5
b)	Since z_{L} pure imaginary, then G is on (H).	0.5
c)	$2 x-2 y y^{\prime}-2=0$ then $y^{\prime}=\frac{x-1}{y}=\frac{\frac{\sqrt{6}}{2}}{\frac{\sqrt{2}}{2}}=\sqrt{3}=$ slope $(B L)$	0.75
5-a)	$\frac{(x-1)^{2}}{1}+\frac{y^{2}}{9}=1$	1
b)	$(B L): y=\sqrt{3}(x+1)$. Replace in $(E):$ $(x-1)^{2}+\frac{1}{3}(x+1)^{2}=1$ then $4 x^{2}-4 x+1=0$. $(2 x-1)^{2}=0$ then $(B L)$ tangent to (E) at $J\left(\frac{1}{2}, \frac{3 \sqrt{3}}{2}\right)$.	1
6-	$P(1,2 \sqrt{3})$. Area $=$ Area of the triangle of $B I P-\frac{1}{4}$ area of (E). $=\frac{2 \times 2 \sqrt{3}}{2}-\frac{1}{4}(\pi \times 1 \times 3)=2 \sqrt{3}-\frac{3 \pi}{4}$ units of area	

QVI	Answers	pts
	Part A.	
1)a-	$\lim _{x \rightarrow 0} g(x)=-\infty$ and $\lim _{x \rightarrow+\infty} g(x)=+\infty$	0.5
b-	$g^{\prime}(x)=1+\frac{1}{x}>0$ $\begin{array}{l\|l} x & 0 \end{array}$	
	$g^{\prime}(x)$ $g(x)$$\xrightarrow{ }$	1
2)	$g(1)=0$ then $g(x)>0$ for $x>1$.	0.5
	Part B .	
	$f(x)=\left(\frac{1-x}{x}\right) \ln x$	
1)a-	$\lim _{x \rightarrow 0} f(x)=-\infty \text { and } \lim _{x \rightarrow+\infty} f(x)=-\infty$ Then $y^{\prime} y$ is an asymptote to (C)	0.75
b-	$\lim _{x \rightarrow+\infty} \frac{f(x)}{x}=0$ then (C) admits a parabolic branch parallel to $\left(x^{\prime} x\right)$.	0.75

2)a-	$f^{\prime}(x)=\frac{-g(x)}{x^{2}}$.	

