المادة: الكيمياء – اللغة الإنكليزية الشهادة: المتوسطة	الهيئة الأكاديميّة المشتركة	
نموذْج رَقم: ٢ / ٢٠١٩ المدّة: ساعة واحدة	قسم: العلوم	المركز التربوي للبحوث والإنماء

This Exam Is Composed of Three Exercises. It Is Inscribed on Two Pages, Numbered 1 and 2. Answer the Three Following Exercises:

Exercise 1 (7 points) Composition and Structure of Formic Acid

Formic acid, known as methanoic acid of formula $C_xH_yO_2$, is a corrosive liquid used to produce insecticides. The aim of this exercise is to study the atomic composition and the Lewis structure of methanoic acid.

Document-1: Histogram showing the atomic number (Z) of each element found in methanoic acid. **Document-2:** Molecular model of methanoic acid.

1. By referring to **document-1**, answer the following questions:

1.1.Calculate the number of neutrons of carbon atom.

1.2. Write the electronic configuration of oxygen atom.

2. Methanoic acid decomposes in the presence of platinum as a catalyst to give two gaseous products hydrogen and carbon dioxide according to the following equation:

$$C_xH_yO_2 \rightarrow H_2 + CO_2$$

- 2.1.Determine, referring to the above equation, the molecular formula of methanoic acid.
- 2.2.Choose, among the following, the pollution effect caused by excessive emission of carbon dioxide:
 - i- Ozone depletion ii- Green house effect iii- Acid rain
- 3. Referring to **document-2**, answer the following questions:

3.1.Specify the type of bond between the carbon atom and the hydrogen atom.

- 3.2.Indicate the number of valence electrons of carbon and hydrogen atoms. Justify your answer.
- 3.3. Give the Lewis dot symbol of carbon and hydrogen atoms.
- 3.4. Write the Lewis structure of methanoic acid.

Exercise 2 (7 points) Identifying the Nature of Electrodes of an Electrochemical Cell

In an Electrochemical Cell, spontaneous electrontransfer reactions can be used to produce electricity in a device that converts chemical energy into electrical energy.

The aim of this exercise is to identify the electrode of an electrochemical cell.

Document-1: Classification of metals according to their tendency to lose electrons.

Document-2: Scheme of an electrochemical cell (Cu- X) while operating.

- 1. Referring to **documents 1 and 2**, show that the metal (X) is silver (Ag).
- 2. Referring to **document 2**, answer the following questions:
 - 2.1.Identify the anode of this cell.
 - 2.2. Write the two half- reactions that take place at the electrodes of the electrochemical cell.
 - 2.3.Deduce the overall equation of the reaction.
 - 2.4. Give the cell representation.
 - 2.5. Specify whether the following statements are true or false.
 - a- The K⁺ ions move from the salt bridge into the beaker containing solution (1).
 - b- Solution (1) contains silver ions Ag⁺.
 - c- The intensity of the blue color decreases when the cell operates.

Exercise 3 (6 points)

Alkanes

Crude oil is a complex mixture of hydrocarbons. At an oil refinery, the various hydrocarbons are separated into mixtures of compounds with similar boiling points; boiling points depend on the composition of hydrocarbons.

Document-1: Table showing the boiling point of some straight chain alkanes.

Straight chain alkanes	Ethane	Alkane (A)	Octane	
Boiling point	-87°C	0°C	125°C	
Document-1				

- 1. Name the separation technique used to separate the constituents of the crude oil.
- 2. For each of the following, choose the correct answer. Justify.
 - 2.1. Alkane (A) can be:

i- Decane

The quantity of sulfur dioxide (SO₂) in ppb

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Document-2

ii- Methane iii- Butane 2.2. Alkane (A) has another isomer (A₁) which has a branched chain. The boiling point of (A₁) is: i- lower than 0°C ii- higher than 0°C iii- equal to 0°C

180

160

140

120

100

80

60

40

20

0

3. During the combustion of a fuel containing octane, the sulfur dioxide gas (SO_2) released reacts with water vapor to produce sulfuric acid which contributes to the formation of acid rain. This phenomenon damages tree roots and attacks statues and buildings.

Document-2: Graph showing the quantity of sulfur dioxide gas (SO₂) in ppb (part per billion) released between 2003 and 2015.

- 3.1. Compare the amount of SO₂ (in ppb) released in 2010 and 2015.
- 3.2. Pick out from the text two harmful consequences of acid rain on the environment.
- 4. Ethane is obtained by the hydrogenation reaction of ethene in the presence of nickel (Ni) as catalyst, according to the following equation: $CH_2 = CH_2 + H_2 \rightarrow CH_3 - CH_3$ Specify whether this is an addition or a substitution reaction.

Year

المادة: الكيمياء – اللغة الإنكليزية الشهادة: المتوسطة نموذج رقم: ١ / ٢٠١٩ المدة: ساعة واحدة	الهيئة الأكاديميّة المشتركة قسم: العلوم	المركز التربوي للبحوث والإنماء
--	--	-----------------------------------

أسس التصحيح:

Part of	Exercise 1 (7 points) Composition and Structural of Formic Acid	Mark
questions	Exnected Answers	
1.1	A=Z+N (A= mass number=12, Z=atomic number = 6, N= number of	1/2
	neutrons)	1/2
	So N= $12-6=6$ neutrons	
1.2	In a neutral atom, the number of protons is equal to the number of	1⁄4
	electrons= 8, so the electronic configuration is $K^2 L^6$.	1⁄2
2.1	According to the law of conservation of matter, the number of atoms of each element is conserved	1/2
	For carbon: $x = 1$	1/4
	For hydrogen: $y = 2$	1/4
	Then the molecular formula of compound $C_xH_yO_2$ is CH ₂ O ₂ .	1/4
	ii- Greenhouse effect	1/2
3.1	The bond is single covalent bond since the carbon atom shares one pair of	1/2
	electrons with the hydrogen atom.	
3.2	- The number of valence electrons of carbon atom is 4.	1⁄4
	- The number of valence electrons of hydrogen atom is 1.	1⁄4
	The carbon atom shares one pair of electrons with the hydrogen atom and one pair of electrons with one of the two oxygen atoms; it also shares two pairs of electrons with the second oxygen atom. So, carbon has 4 valence electrons. The hydrogen atom shares one pair of electrons with carbon atom; so, it	1⁄2
	has one valence electron.	1/2
3.3	The Lewis dot symbol of these atoms are:	2x(1/4)
3.4	•Ю-н	1
	H - C = O:	

Part of	Exercise 2 (7 points)	Mark
questions	Identifying the Nature of Electrodes of an Electrochemical Cell	
	Expected Answers	
1	Referring to document-2, the electrons move from the copper electrode to	
	electrode (X), this means that metal (X) has lower tendency to lose electrons	
	than copper, and by referring to document-1, the metal (X) is Ag.	1
2.1	The anode is the copper electrode Cu, since the electrons move from copper	1/2
	metal to silver metal.	1/2
2.2	$Ag^+ + 1e^- \rightarrow Ag$ Cathode half – reaction	1⁄2
	$Cu \rightarrow Cu^{2+} + 2e^{-}$ Anode half – reaction	1⁄2

2.3	$(Ag^+ + 1e^- \rightarrow Ag) \ge 2$	
	$\underline{Cu} \rightarrow \underline{Cu}^{2+} + \underline{2e^{-}}$	1
	Overall reaction: $2Ag^+ + Cu \rightarrow 2Ag + Cu^{2+}$	
2.4	$Cu Cu^{2+}$ - salt bridge - $Ag^+ Ag$	3⁄4
2.5	a- True, to maintain the electroneutrality of solution (1), the K ⁺ ions of the salt	1/4 1/2
	bridge move towards the cathode half-cell.	
	b- True, in the electrochemical cell, the metal is immersed in a solution	
	containing its cation.	1/4 1/2
	c- False, when the cell is operating, the anode Cu is oxidized to give copper	
	ions Cu ²⁺ having a blue color; so, the intensity of the blue color increases	1/4 1/2
	with time.	

Part of	Exercise 3 (6 points) Alkanes	Mark
questions		
	Expected Answers	
1.	Fractional Distillation.	1/2
2.1	iii- Butane	1/2
	In a straight chain alkane, the boiling point increases as the number of carbon	
	atoms increases. Since the alkane (A) has higher boiling point (0°C) than that	1
	of ethane (-87°C) and lower than that of octane (125°C), the number of carbon	
	atoms of alkane A should be between that of ethane (2) and that of octane (8).	
	So alkane A is butane.	
2.2	i- lower than 0 ⁰ C	1⁄4
	For the isomers of an alkane, the boiling point of the branched alkane is lower	
	than that of its corresponding straight chain isomer.	3⁄4
3.1	The quantity of SO_2 in 2010 is 180 ppb.	1⁄2
	The quantity of SO_2 in 2015 is 20 ppb.	1⁄2
	So the quantity of SO_2 in 2015 is lower than that in 2010.	1/2
3.2	- Damages tree roots.	1⁄4
	- Attacks statues and buildings.	1⁄4
4	Addition reaction.	1⁄4
	Since two hydrogen atoms are added over the double bond to form one	3⁄4
	saturated compound (alkane).	