وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسميّة

امتحانات الشهادة الثانوية العامة فرع: الاجتماع والاقتصاد

دورة المعام ٢٠١٨ الاستثنائية الاثنين في ٦ آب ٢٠١٨ مكيّفة / احتياجات خاصة

عدد المسائل: اربع

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة)

مسابقة في مادة الرياضيات

المدة: ساعتان

باللغة الإنكليزية

الاسم :

الرقم :

I- (4 points)

The table below shows the number of demanded televisions in terms of the sale price, in hundred thousands LL, of each television:

The sale price of a television in		9	10	11	13	15
hundred thousands LL (x_i)						
Number of demanded televisions (y _i)	25	22	20	16	10	7

Round all your answers to the nearest 10^{-1} .

1) a- **Calculate** the coordinates of the center of gravity $G(\overline{x}, \overline{y})$.

b- **Draw**, in a rectangular system, the scatter plot of the points associated to the distribution $(x_i; y_i)$.

c- Plot G.

d- **Determine** an equation of the regression line $(D_{y/x})$ and draw it in the same system.

- 2) **Calculate** the percentage of decrease in the number of demanded televisions when the sale price of a television increases from 900000 LL to 1 300000 LL.
- Suppose that the above pattern remains valid for a sale price less than or equal to 1 700000 LL.

Estimate the number of demanded televisions at a price of 1 590 000 LL.

4) a- Verify that the elasticity of demand in terms of the price x is $E(x) = \frac{-2.7x}{2.7x - 46.1}$.

b- Calculate E(11).

c- Give an economical interpretation of the obtained value.

II- (4 points)

A telecommunication enterprise conducted a survey about the clients who bought only one prepaid mobile line of type E or F. After buying the mobile line, a client either does not subscribe to the internet or subscribes to the internet by choosing only one of the two options A (500 mega bites) or B (1.5 gega bites).

The enterprise declares that:

- 60% of the clients bought each a line of type E;
- Among the clients who bought each a line of type E: 45% chose option A, 35% chose option B and 20% did not subscribe to the internet;
- Among the clients who bought each a line of type F, 55% chose option A;

;

• 18% of all the surveyed clients did not subscribe to the internet.

A client is randomly interviewed.

Consider the following events:

- E: "The interviewed client bought ; a line of type E"
 - A: "The interviewed client chose option A";
- B: "The interviewed client chose option B"
- C: "The client did not subscribe to the internet".

- 1) Calculate $P(\overline{E})$.
- 2) a- Calculate the probability $P(C \cap E)$.
 - **b-** Knowing that P(C) = 0.18, **deduce** that $P(C \cap \overline{E}) = 0.06$.
 - c- Calculate $P\left(\frac{C}{E}\right)$.

3) The monthly rate price of a line of type E is 30000 LL and a line of type F is 40000 LL.

In addition, option A costs 10000 LL and option B costs 20000 LL per month.

	А	В	С
E	40 000 LL	50 000 LL	30 000 LL
Ē	50 000 LL	60 000 LL	40 000 LL

The table below represents the sum paid monthly by a surveyed client.

Let X be the random variable equal to the sum paid monthly by a surveyed client.

a- Verify that $P(X = 40\ 000) = 0.33$

b- Complete, then, the table below that represents the probability distribution of X.

$X = x_i$	30 000	40 000	50000	60 000
$P(X = x_i)$		0.33	0.43	0.12

- **c- Verify** that, the mathematical expectation of X, E(X) = 45500.
- d- Estimate, in LL, the revenue when the enterprise sells 100000 lines.

III- (4 points)

In 2011, the number of students in a university was 3000.

Each academic year, 12% of the students leave this university for different reasons and 480 new students join in.

For all integers $n \ge 0$, denote by U_n the number of students in this university in the year (2011 + n).

So $U_0 = 3000$.

- **1)** Verify that $U_1 = 3120$.
- 2) For all integers $n \ge 0$, justify that $U_{n+1} = 0.88U_n + 480$.
- 3) For all integers $n \ge 0$, consider the sequence (V_n) defined as $V_n = U_n 4000$.

a-Show that (V_n) is a geometric sequence whose common ratio r = 0.88 and first term $V_0 = -1000$.

b- For all integers $n \ge 0$, **show** that $V_n = -1\,000(0,88)^n$ et

 $U_n = 4\ 000 - 1\ 000\ (0.88)^n$.

c- Estimate the number of students in this university in 2017.

4) The university decides to invest, in 2017, a profit of 3535000000 LL in a bank with an annual interest rate of 6% compounded monthly to build a laboratory.Calculate the future value at the end of the 5 years of investment.

IV- (8 points)

Part A

Consider the function f defined on $[0,+\infty[$ as $f(x) = 2x + 1 + xe^{-x+2}$ and denote by (C) its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$.

- 1) Determine $\lim_{x\to+\infty} f(x)$ and calculate f(1).
- 2) Let (d) be the line with equation y = 2x + 1.
 - **a- Study**, according to the values of x, the relative position of (C) and (d) and **specify** the coordinates of their point of intersection.
 - **b-** Show that (d) is an asymptote to (C).
- 3) a-Show that $f'(x) = 2 + (1-x)e^{-x+2}$.
 - **b-** The curve (G) of the function f' is shown in the figure below.

For all x on $[0, +\infty)$, verify that f'(x) > 0.

c- Set up the table of variations of f.

- 4) The line (D) with equation y = 4x intersects (C) at the point with abscissa α.
 Show that 1.66 < α < 1.68.
- **5**) **Draw** (d), (D) and (C).

Part B

In what follows, suppose that $\alpha = 1.67$.

A factory produces watches. The average cost function C is modeled as $\overline{C}(x) = 2 + \frac{1}{x} + e^{-x+2}$ for all $0 < x \le 4$, x is the number of produced watches expressed in

hundreds.

The total cost, average cost, revenue and profit functions as well as the unit price are all expressed in the same unit which is in millions LL.

- 1) Calculate $\overline{C}(3)$. Deduce, in LL, the average cost of producing a watch among the first 300 watches produced.
- 2) Verify that the total cost function is modeled as: $C_T(x) = f(x) = 2x + 1 + xe^{-x+2}$.
- 3) Knowing that the whole production is sold, the revenue function R is modeled as R(x) = 4x.
 - **a Determine** the minimal number of watches for which the factory achieves a profit.
 - b- 20% of the watches are defective. Each defective watch is sold for 12000 LL and each non-defective watch is sold for p LL.

Show that p = 47000.