	امتحانـات الثهادة الثانـويـة العامة	وزارة التربيةّ والتُليم العالي
الالثين فـي 7 آب	فرع: الاجتماع والاقّتصاد	المديرية العامدالـة للتربية
مكيّفة / احتياجات خاصة		دائرة الامتحانـانـات الرسميّة
		عدد المسائل: اربع

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اخنزان المعلومـات او رسم البيانات - يستطيع المرشّح الإجابة بالنترنيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة)

مسابقة في مـادة الرياضيات

المدة: ساعتان

باللغة الإنكليزية

I- (4 points)

The table below shows the number of demanded televisions in terms of the sale price, in hundred thousands LL, of each television:

The sale price of a television in hundred thousands $\mathbf{L L}\left(\mathrm{x}_{\mathrm{i}}\right)$	8	9	10	11	13	15
Number of demanded televisions $\left(\mathrm{y}_{\mathrm{i}}\right)$	25	22	20	16	10	7

Round all your answers to the nearest 10^{-1}.

1) a- Calculate the coordinates of the center of gravity $G(\bar{x}, \bar{y})$.
b- Draw, in a rectangular system, the scatter plot of the points associated to the distribution $\left(\mathrm{x}_{\mathrm{i}} ; \mathrm{y}_{\mathrm{i}}\right)$.
c- Plot G.
d- Determine an equation of the regression line $\left(\mathrm{D}_{\mathrm{y} / \mathrm{x}}\right)$ and draw it in the same system.
2) Calculate the percentage of decrease in the number of demanded televisions when the sale price of a television increases from 900000 LL to 1300000 LL.
3) Suppose that the above pattern remains valid for a sale price less than or equal to 1700000 LL.

Estimate the number of demanded televisions at a price of 1590000 LL.
4) a- Verify that the elasticity of demand in terms of the price x is $E(x)=\frac{-2.7 x}{2.7 x-46.1}$. b- Calculate E(11).
c- Give an economical interpretation of the obtained value.

II- (4 points)

A telecommunication enterprise conducted a survey about the clients who bought only one prepaid mobile line of type E or F . After buying the mobile line, a client either does not subscribe to the internet or subscribes to the internet by choosing only one of the two options A (500 mega bites) or B (1.5 gega bites).

The enterprise declares that:

- 60% of the clients bought each a line of type E ;
- Among the clients who bought each a line of type E:
45% chose option A, 35% chose option B and 20% did not subscribe to the internet;
- Among the clients who bought each a line of type F, 55\% chose option A;
- 18% of all the surveyed clients did not subscribe to the internet.

A client is randomly interviewed.
Consider the following events:
E: "The interviewed client bought ; A: "The interviewed client a line of type $E "$ chose option A";

B: "The interviewed client chose ; option B"

C: "The client did not subscribe to the internet".

1) Calculate $P(\overline{\mathrm{E}})$.
2) a- Calculate the probability $\mathrm{P}(\mathrm{C} \cap \mathrm{E})$.
b- Knowing that $\mathrm{P}(\mathrm{C})=0.18$, deduce that $\mathrm{P}(\mathrm{C} \cap \overline{\mathrm{E}})=0.06$.
c- Calculate $\mathrm{P}(\mathrm{C} / \overline{\mathrm{E}})$.
3) The monthly rate price of a line of type E is 30000 LL and a line of type F is 40000 LL.

In addition, option A costs 10000 LL and option B costs 20000 LL per month.

The table below represents the sum paid monthly by a surveyed client.

	A	B	C
E	40000 LL	50000 LL	30000 LL
$\overline{\mathrm{E}}$	50000 LL	60000 LL	40000 LL

Let X be the random variable equal to the sum paid monthly by a surveyed client.
a- Verify that $\mathrm{P}(\mathrm{X}=40000)=0.33$
b- Complete, then, the table below that represents the probability distribution of X .

$\mathrm{X}=\mathrm{x}_{\mathrm{i}}$	30000	40000	50000	60000
$\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)$		0.33	0.43	0.12

c- Verify that, the mathematical expectation of $\mathrm{X}, \mathrm{E}(\mathrm{X})=45500$.
d- Estimate, in LL, the revenue when the enterprise sells 100000 lines.

III- (4 points)

In 2011, the number of students in a university was 3000 .
Each academic year, 12% of the students leave this university for different reasons and 480 new students join in.

For all integers $\mathrm{n} \geq 0$, denote by U_{n} the number of students in this university in the year $(2011+n)$.
So $U_{0}=3000$.

1) Verify that $U_{1}=3120$.
2) For all integers $n \geq 0$, justify that $U_{n+1}=0.88 U_{n}+480$.
3) For all integers $n \geq 0$, consider the sequence $\left(V_{n}\right)$ defined as $V_{n}=U_{n}-4000$. a-Show that $\left(V_{n}\right)$ is a geometric sequence whose common ratio $r=0.88$ and first term

$$
\mathrm{V}_{0}=-1000 .
$$

b- For all integers $n \geq 0$, show that $V_{n}=-1000(0,88)^{n}$ et

$$
\mathrm{U}_{\mathrm{n}}=4000-1000(0.88)^{\mathrm{n}} .
$$

c- Estimate the number of students in this university in 2017.
4) The university decides to invest, in 2017, a profit of 3535000000 LL in a bank with an annual interest rate of 6% compounded monthly to build a laboratory.
Calculate the future value at the end of the 5 years of investment.

IV- (8 points)

Part A

Consider the function f defined on $\left[0,+\infty\left[\right.\right.$ as $f(x)=2 x+1+x e^{-x+2}$ and denote by (C) its representative curve in an orthonormal system $(O ; \vec{i}, \vec{j})$.

1) Determine $\lim _{x \rightarrow+\infty} f(x)$ and calculate $f(1)$.
2) Let (d) be the line with equation $y=2 x+1$.
a- Study, according to the values of x, the relative position of (C) and (d) and specify the coordinates of their point of intersection.
b- Show that (d) is an asymptote to (C).
3) a- Show that $f^{\prime}(x)=2+(1-x) e^{-x+2}$.
b- The curve (G) of the function f^{\prime} is shown in the figure below.

For all x on $\left[0,+\infty\left[\right.\right.$, verify that $\mathrm{f}^{\prime}(\mathrm{x})>0$.
c- Set up the table of variations of f.
4) The line (D) with equation $y=4 x$ intersects (C) at the point with abscissa α.

Show that $1.66<\alpha<1.68$.
5) Draw (d), (D) and (C).

Part B

In what follows, suppose that $\alpha=1.67$.
A factory produces watches. The average cost function $\overline{\mathrm{C}}$ is modeled as $\overline{\mathrm{C}}(\mathrm{x})=2+\frac{1}{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}+2}$ for all $0<\mathrm{x} \leq 4, \mathrm{x}$ is the number of produced watches expressed in hundreds.

The total cost, average cost, revenue and profit functions as well as the unit price are all expressed in the same unit which is in millions LL.

1) Calculate $\overline{\mathrm{C}}(3)$. Deduce, in LL, the average cost of producing a watch among the first 300 watches produced.
2) Verify that the total cost function is modeled as: $C_{T}(x)=f(x)=2 x+1+x^{-x+2}$.
3) Knowing that the whole production is sold, the revenue function R is modeled as $R(x)=4 x$.
a- Determine the minimal number of watches for which the factory achieves a profit.
b- 20% of the watches are defective. Each defective watch is sold for 12000 LL and each non-defective watch is sold for p LL. Show that $\mathrm{p}=47000$.
