دورة العام ٢٠١٨ الاستثنائية الثلاثاء ٣١ تموز ٢٠١٨

متحانات الشهادة الثانوية العامة فرع الآداب والانسانيات

وزارة التربية والتعليم العالي المديريّة العامة للتربية دائرة الامتحانـات الرسمية

الاسم:	مسابقة في مادة الرياضيات	عدد المسائل: ثلاث
الرقم:	المّدة: ساعة	

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات.

- يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (5 points)

In a certain store, all the pants are sold at the same price and all the shirts are sold at the same price.

Diala bought 3 pants and 4 shirts for 240 000 LL.

Joudi bought 2 pants and 2 shirts for 140 000 LL.

- 1) Calculate the price of one pant and that of one shirt.
- 2) The store proposes two offers for Diala if she buys 5 shirts and 5 pants:
 - Offer 1

10% discount on the price of each pant and 30% discount on the price of each shirt.

Offer 2

A reduction of 60 000 LL on the total amount.

Which one of the two offers is better for Diala? Justify your answer.

II- (5 points)

80 tourists are travelling on a boat to visit a certain island. These tourists are distributed as shown in the table below:

Age in years	[16; 24[[24;32[[32;40[[40;48[[48; 56]
Europeans	6	7	12	3	8
Asians	3	13	11	12	5

- 1) Determine the average age of the European tourists on this boat.
- 2) The captain of this boat chose randomly one person from these tourists to be the guest of honor. Consider the following events:

E: " the chosen tourist is European ".

A: " the chosen tourist is Asian ".

Y: " the chosen tourist is less than 32 years old ".

- a. Verify that the probability of Y is $\frac{29}{80}$.
- b. Calculate the following probabilities:

$$P(E),\ P\Big(\frac{Y}{A}\Big),\ P(Y\cap A),\ P(Y\cup\ E)\ \ and\ \ P\Big(\frac{A}{Y}\Big)\ .$$

III- (10 points)

Let f be the function defined on the interval $I =]-1; +\infty[$ as $f(x) = \frac{x^2 + 3}{x + 1}$ and let (C) be its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$.

- 1) Show that $f(x) = x 1 + \frac{4}{x+1}$.
- 2) a. Determine $\lim_{\substack{x \to -1 \\ x>-1}} f(x)$ and deduce an equation of an asymptote to (C).
 - b. Determine $\lim_{x\to +\infty} f(x)$.
 - c. Prove that the line (d) with equation y = x 1 is an asymptote to (C).
- 3) a. Verify that $f'(x) = \frac{(x-1)(x+3)}{(x+1)^2}$.
 - b. Copy and complete the following table of variations of f.

x -1	1	$+\infty$
f '(x)	0	
f(x)		

- 4) a. Calculate the coordinates of the points of intersection of (C) and the line with equation y = 3.
 - b. Find an equation of the tangent to (C) at its point with abscissa 0.
 - c. Draw the curve (C) and its two asymptotes.
- 5) Solve graphically: $2 < f(x) \le 3$.

عدد المسائل: ثلاث

أسس التصحيح مادة الرياضيات

QI	Answers	Mark
1	Let x be the price of a pant and y the price of a shirt $ \begin{cases} 3x + 4y = 240000 \\ 2x + 2y = 140000 \end{cases} $ x = 40000 LL and y = 30 000 LL	2
2	Offer 1: after the discount, the price of a pant is $:40000 \times 0.9 = 36000$ LL. And the price of a shirt is $:30000 \times 0.7 = 21000$ L.L. $5 \times 36000 + 5 \times 21000 = 285000$ LL Offer 2: $5 \times 40000 + 5 \times 30000 - 60000 = 290000$ LL Offer 1 is better for Diala.	3

QII	Answers	Mark
	The average age of the Europeans is:	
1	$\frac{20 \times 6 + 7 \times 28 + 12 \times 36 + 3 \times 44 + 8 \times 52}{26} = 36 \text{ years}$	1
	36 = 30 years	
2.a	$P(Y) = \frac{9+20}{80} = \frac{29}{80}$	1
	$P(E) = \frac{36}{80}$; $P(Y/A) = \frac{10}{20}$; $P(Y \cap A) = \frac{6}{80}$,	
2.b	$P(Y \cup E) = P(Y) + P(E) - P(Y \cap E) = \frac{52}{80}$	3
	$P(A/\overline{Y}) = \frac{28}{51}$	

QIII	Answers	Mark
1	$x-1+\frac{4}{x+1} = \frac{(x-1)(x+1)+4}{x+1} = \frac{x^2+3}{x+1}$	1
2.a	$\lim_{\substack{x \to -1 \\ x > -1}} f(x) = \frac{4}{0^+} = +\infty$ $x = -1 \text{ vertical asymptote of (C)}$	1
2.b	$\lim_{x \to +\infty} f(x) = +\infty$	1
2.c	$\lim_{x \to +\infty} \left[f(x) - (x-1) \right] = \lim_{x \to +\infty} \left[\frac{4}{x+1} \right] = 0, y = x - 1 \text{ is an asymptote of (C)}$	1
3.a	$f'(x) = \frac{2x(x+1) - (1)(x^2+1)}{(x+1)^2} = \frac{x^2 + 2x - 3}{(x+1)^2} = \frac{(x-1)(x+3)}{(x+1)^2}$	1

QIII	Answers	Mark
3.b	$ \begin{array}{c ccccc} x & -1 & 1 & +\infty \\ \hline f'(x) & - & 0 & + \\ \hline f(x) & 2 & & \\ \end{array} $	1
4.a	$\frac{x^2 + 3}{x + 1} = 3$, $x^2 - 3x = 0$, then $x = 0$ or $x = 3$ then the points of intersection are $(0,3)$ and $(3,3)$	1
4.b	y-f(0) = f'(0)(x) $y-3 = -3x, y = -3x + 3$	1
4.c		1
5.	$x \in [0;1[\cup]1,3]$	1