This exam is formed of four obligatory exercises in five pages
Non programmable calculators are allowed

مسابقة في مادة الفزياء المدة: ساعة واحدة
 (باللغة الانكليزية)

Exercise 1 (5 points) Pressure in liquids

Consider a U-tube, of uniform cross-section S, containing mercury. In one of the two branches we pour a quantity of water of volume $V=80 \mathrm{~cm}^{3}$ (water and mercury are immiscible).

At equilibrium, the height of water is $\mathbf{H}=\mathbf{4 0} \mathbf{~ c m}$ and that of mercury above the surface of separation of the two liquids is h (document 1).

Given:

- $\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$;
- atmospheric pressure
$\mathrm{P}_{0}=102000 \mathrm{~Pa}$ at Beirut;
- pressure of water

$$
\mathrm{P}_{\text {water }}=40000 \mathrm{~Pa} \text {; }
$$

- density of mercury
$\rho_{\mathrm{Hg}}=13600 \mathrm{~kg} / \mathrm{m}^{3}$.

Choose, with justification, the correct answer:

1. Knowing that $\mathrm{Pc}=$ atmospheric pressure, the pressure P_{C} at C is:
a. greater than that at B .
b. equal to that at B .
c. smaller than that at B.
2. Knowing that the volume is equal to the product of the area and the height, the value of S is:
a. $3200 \mathrm{~cm}^{2}$.
b. $0.5 \mathrm{~cm}^{2}$.
c. $2 \mathrm{~cm}^{2}$.
3. The total pressure P_{A} at A is:
a. 502000 Pa .
b. 4000 Pa .
c. 106000 Pa .
4. Knowing that $\mathrm{P}_{\mathrm{D}}-\mathrm{P}_{\mathrm{C}}=4000 \mathrm{~Pa}$. The value of h is equal to:
a. 0.029 m .
b. 0.136 m .
c. 0.29 m .
5. We repeat the same experiment at Al Barouk Mountain where the atmospheric pressure is less than P_{0}. The value of h :
a. remains the same.
b. increases.
c. decreases.

Position of the virtual image given by a converging lens

Document 2 shows a converging lens (L), its optical center O, its optical axis x 'x, its object focus F and its image focus F^{\prime}.

A luminous object ($A B$) of size $A B=2 \mathrm{~cm}$ is placed at a distance d_{1} from (L) perpendicularly to the optical axis at A. ($A^{\prime} B^{\prime}$) is the image of (AB) given by (L). It is situated at a distance d_{2} from (L).

$\begin{array}{\|l\|l\|} \hline \text { Direction } \\ \hline \end{array}$		of propagation			of light										$2 \mathrm{~cm}$	Scale
						(L) 4									2.5 cm	
\mathbf{x}^{\prime}																x
	F					0									F'	

Doc. 2

1. Show that, using the scale, the focal length of (L) is $f=15 \mathrm{~cm}$.
2. The table below gives, for different values of d_{1}, the corresponding values of d_{2}.

$\mathbf{d}_{\mathbf{1}}(\mathbf{c m})$	2.5	5	7.5	10
$\mathbf{d}_{\mathbf{2}}(\mathbf{c m})$	3	7.5	x	30

2.1. Referring to the table, how does $\mathbf{d}_{\mathbf{2}}$ vary when \mathbf{d}_{1} increases?
2.2. Choose x , out of the following values :

5 cm	15 cm	40 cm

3. Reproduce, on your graph paper and using the same scale, the document 2 .
4. The object (AB) is at 7.5 cm from (L).
4.1. Place (AB) on the preceding reproduction respecting the chosen scale.
4.2. Construct, without explanation, the image ($\mathrm{A}^{\prime} \mathrm{B}^{\prime}$).
4.3.Verify graphically the value of x .

Exercise 3 (4 points)

Characteristics of the voltage of the mains (Electricity in the home)

The waveform of document 3 represents the variations of the voltage of the mains (u), delivered by EDL (Electricity of Lebanon), as a function of time

1. Referring to document 3 :
1.1.indicate the type of the voltage (u).
1.2.show that the maximum voltage U_{m} of (u) is equal to 310 V .
1.3.verify that the period T is equal to 20 ms .
2. Deduce:
2.1. that the value of effective voltage U of (u) is approximately equal to 220 V .

Take: $\sqrt{2}=1.41$.
2.2. the value of the frequency f of (u).
3. On the rating plates of two electric devices, we read the following inscriptions:

Device A
$110 \mathrm{~V} ; 60 \mathrm{~Hz} ; \mathrm{AC} \sim$

Device B
$220 \mathrm{~V} ; 50 \mathrm{~Hz} ; \mathrm{AC} \sim$

Using part 2, choose, with justification, the electric device that can function normally when it is fed by the voltage (\mathbf{u}).

Exercise 4 (5 points) Normal functioning of the lamp

A lamp (L), carrying the inscriptions ($6 \mathrm{~W} ; 12 \mathrm{~V}$), is assumed as a resistor (ohmic conductor) of resistance r.

1. Show that the current carried by the lamp (L) while functioning normally is $I_{0}=0.5 \mathrm{~A}$.
2. Show that the resistance r of the lamp is 24Ω.
3. The lamp (L) is placed in an electric circuit as shown in document 4.

The resistors $\left(R_{1}\right)$ and $\left(R_{2}\right)$ have resistances $R_{1}=10 \Omega$ and $R_{2}=20 \Omega$ respectively.
The ammeter (A), of negligible resistance, displays 0.1 A .

3.1. Calculate, by applying the Ohm's law, the value of the voltage U_{1} across $\left(R_{1}\right)$.
3.2.a. Justify that the value of the voltage U_{2} across $\left(R_{2}\right)$ is equal to that of U_{1}
b. Deduce, by applying the Ohm's law, that the current I_{2} by $\left(R_{2}\right)$ is 0.05 A .
3.3.Show that the current I carried by the lamp (L) is 0.15 A .
3.4.Justify that (L) does not function normally in this circuit.

