مسابقةّ في مـادة الفيزياءمسابقةّ في مـادة الفيزياء
المدة: ساعة واحدة

This exam is formed of four obligatory exercises in two pages
 Non programmable calculators are allowed

Exercise 1 (5 points) Pressure in liquids

Consider a U-tube, of uniform cross-section S , containing mercury. In one of the two branches we pour a quantity of water of volume $\mathrm{V}=80 \mathrm{~cm}^{3}$ (water and mercury are immiscible). At equilibrium, the height of water is $\mathrm{H}=40 \mathrm{~cm}$ and that of mercury above the surface of separation of the two liquids is h (document 1). Given:

- $\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$;
- atmospheric pressure $\mathrm{P}_{0}=102000 \mathrm{~Pa}$ at Beirut;
- density of water $\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$;
- density of mercury $\rho_{\mathrm{Hg}}=13600 \mathrm{~kg} / \mathrm{m}^{3}$.

Choose, with justification, the correct answer:

1. The pressure P_{C} at C is:
a. greater than that at B .
b. equal to that at B.
c. smaller than that at B.
2. The value of S is:
a. $3200 \mathrm{~cm}^{2}$.
b. $0.5 \mathrm{~cm}^{2}$.
c. $2 \mathrm{~cm}^{2}$.
3. The total pressure P_{A} at A is:
a. 502000 Pa .
b. 4000 Pa .
c. 106000 Pa .
4. The total pressure at D is equal to that at A , so the value of h is approximately equal to:
a. 2.9 cm .
b. 13.6 cm .
c. 29 cm .
5. We repeat the same experiment at Al Barouk Mountain where the atmospheric pressure is less than P_{0}. The value of h :
a. remains the same.
b. increases.
c. decreases.

Exercise 2 (6 points) Position of the virtual image given by a converging lens

Document 2 shows a converging lens (L), its optical center O , its optical axis $\mathrm{x}^{\prime} \mathrm{x}$, its object focus F and its image focus F^{\prime}.
A luminous object $(A B)$ of size $A B=2 \mathrm{~cm}$ is placed at a distance d_{1} from (L) perpendicularly to the optical axis at A. (A'B') is the image of (AB) given by (L). It is situated at a distance d_{2} from (L).

Doc. 2

1. Show that the focal length of (L) is $\mathrm{f}=15 \mathrm{~cm}$.
2. The adjacent table gives, for different values of d_{1}, the corresponding values of d_{2}.

$\mathbf{d}_{\mathbf{1}}(\mathbf{c m})$	2.5	5	7.5	10
$\mathbf{d}_{\mathbf{2}}(\mathbf{c m})$	3	7.5	x	30

2.1. Referring to the table, how does d_{2} vary when d_{1} increases?
2.2. Out of the following values $5 \mathrm{~cm}, 15 \mathrm{~cm}$ and 40 cm , choose the value corresponds to x.
3. Reproduce, on your graph paper and using the same scale, the document 2 .
4. The object (AB) is at 7.5 cm from (L).
4.1. Place (AB) on the preceding reproduction respecting the chosen scale.
4.2. Construct, without explanation, the image ($A^{\prime} \mathrm{B}^{\prime}$).
4.3. Verify graphically the value of x.

Exercise 3 (4 points) Characteristics of the voltage of the mains (Electricity in the home)

The waveform of document 3 represents the variations of the voltage of the mains (u), delivered by EDL (Electricity of Lebanon), as a function of time

1. Referring to document 3 :
1.1. indicate the type of the voltage (u).
1.2. show that the maximum voltage U_{m} of (u) is equal to 310 V .
1.3. calculate its period T.
2. Deduce:
2.1. the effective voltage U of (u). Take: $\sqrt{2}=1.41$.
2.2. its frequency f.
3. On the rating plates of two electric devices, we read the following
 inscriptions:

Device A
$110 \mathrm{~V} ; 60 \mathrm{~Hz} ; \mathrm{AC} \sim$

Device B
$220 \mathrm{~V} ; 50 \mathrm{~Hz} ; \mathrm{AC} \sim$

Choose, with justification, the electric device that can function normally when it is fed by the voltage (u).

Exercise 4 (5 points) Normal functioning of the lamp

A lamp (L), carrying the inscriptions ($6 \mathrm{~W} ; 12 \mathrm{~V}$), is assumed as a resistor (ohmic conductor) of resistance r .

1. Show that the current carried by the lamp (L) while functioning normally is $\mathrm{I}_{0}=0.5 \mathrm{~A}$.
2. Calculate r.
3. The lamp (L) is placed in an electric circuit as shown in document 4.
The resistors $\left(\mathrm{R}_{1}\right)$ and $\left(\mathrm{R}_{2}\right)$ have resistances
$\mathrm{R}_{1}=10 \Omega$ and $\mathrm{R}_{2}=20 \Omega$ respectively.
The ammeter (A), of negligible resistance, displays 0.1 A .
3.1. Calculate the value of the voltage U_{1} across $\left(R_{1}\right)$.
3.2. Show that the current I_{2} carried by $\left(R_{2}\right)$ is 0.05 A .

3.3. Deduce the current I through the lamp (L).
3.4. Does (L) function normally in this circuit? Why?

Exercise 1 (5 points) Pressure in liquids

Part	Answer	Mark
$\mathbf{1}$	b. (equal to that at B) since $\mathrm{P}_{\mathrm{C}}=\mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\text {atm }}$	$\mathbf{1}$
$\mathbf{2}$	c. $\left(\mathrm{S}=2 \mathrm{~cm}^{2}\right) \quad \mathrm{S}=\frac{V}{H}=\frac{80 \mathrm{~cm}^{3}}{40 \mathrm{~cm}}=2 \mathrm{~cm}^{2}$	$\mathbf{1}$
$\mathbf{3}$	c. $\left(\mathrm{P}_{\mathrm{A}}=106000 \mathrm{~Pa}\right)$ $\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {atm }}+\mathrm{P}_{\text {water }}$ $=102000+\rho_{\mathrm{w}} \times \mathrm{g} \times \mathrm{H}$ $=102000+1000 \times 10 \times 0.4$ $=106000 \mathrm{~Pa}$	$\mathbf{1}$
$\mathbf{4}$	a. $(\mathrm{h}=2.9 \mathrm{~cm})$ $\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}}$ $106000=\rho_{\mathrm{Hg}} \times \mathrm{g} \times \mathrm{h}+102000$ $\mathrm{~h}=\frac{4000}{136000}=0.029 \mathrm{~m}=2.9 \mathrm{~cm}$	$\mathbf{1}$
$\mathbf{5}$	a. (remains the same $)$ since $\mathrm{P}_{\mathrm{c}}=\mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\text {atm }}($ atmospheric pressure is the same on the surfaces of liquids of the two branches $)$	$\mathbf{1}$

Exercise 2 (6 points) Position of the virtual image given by a converging lens

Exercise 3 (4 points) Characteristics of the voltage of the mains (Electricity in the home)

Part	Answer	Mark
1.1	The type of the voltage (u) is alternating sinusoidal.	0.25
1.2	$\mathrm{U}_{\mathrm{m}}=\mathrm{y} \times \mathrm{S}_{\mathrm{v}}=3.1 \times 100=310 \mathrm{~V}$	0.75
1.3	$\mathrm{T}=\mathrm{x} \times \mathrm{S}_{\mathrm{h}}=5 \times 4=20 \mathrm{~ms}=0.02 \mathrm{~s}$	0.75
2.1	$\mathrm{U}=\frac{U_{m}}{\sqrt{2}}=\frac{310}{1.41}=219.85 \mathrm{~V} \approx 220 \mathrm{~V}$	0.75
2.2	$\mathrm{f}=\frac{1}{T}=\frac{1}{0.02}=50 \mathrm{~Hz}$	0.75
3	Device B functions normally, since its characteristics are the same of (u). $\begin{aligned} & \mathrm{U}=\mathrm{U}_{\text {rated(B) }}=220 \mathrm{v} \\ & \mathrm{f}=50 \mathrm{~Hz} \end{aligned}$ the mode of the voltage is AC.	0.75

Exercise 4 (5 points) Normal functioning of the lamp

Part	Answer	Mark
1	$\begin{aligned} & \mathrm{P}=\mathrm{U} \times \mathrm{I}_{0} \\ & \mathrm{I}_{0}=\frac{P}{U}=\frac{6}{12}=0.5 \mathrm{~A} \end{aligned}$	1
2	$\begin{aligned} & \mathrm{P}=\mathrm{rl}^{2} \\ & \mathrm{r}=\frac{P}{I^{2}}=\frac{6}{0.5^{2}}=24 \Omega \end{aligned}$	1
3.1	Apply ohm's law across the terminals of (R_{1}): $\mathrm{U}_{1}=\mathrm{R}_{1} \times \mathrm{I}_{1}=1 \mathrm{~V}$	1
3.2	$\mathrm{I}_{2}=\frac{U_{2}}{R_{2}}=\frac{1}{20}=0.05 \mathrm{~A}\left(\mathrm{U}_{1}=\mathrm{U}_{2}=1 \mathrm{~V}\right.$ since R_{1} and R_{2} are connected in parallel)	0.5
3.3	$\begin{aligned} & \text { (apply the law of addition of current) } \\ & \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2} \\ & \mathrm{I}=0.1+0.05=0.15 \mathrm{~A} \end{aligned}$	1
3.4	No, since I $\neq \mathrm{I}$	0.5

