دورة العام ٢٠١٨ الاستثنائية الاثنين ١٣ آب ٢٠١٨

مسابقة في مادة الفيزياء

الاسم الرقم:

المدة: ساعة واحدة This exam is formed of four obligatory exercises in two pages

Non programmable calculators are allowed

Exercise 1 (5 points) Pressure in liquids

Consider a U-tube, of uniform cross-section S, containing mercury. In one of the two branches we pour a quantity of water of volume $V = 80 \text{ cm}^3$ (water and mercury are immiscible). At equilibrium, the height of water is H = 40 cm and that of mercury above the surface of separation of the two liquids is h (document 1). Given:

- g = 10 N/kg;
- atmospheric pressure $P_0 = 102000$ Pa at Beirut;
- density of water $\rho_{water} = 1000 \text{ kg/m}^3$;
- density of mercury $\rho_{Hg} = 13600 \text{ kg/m}^3$.

Choose, with justification, the correct answer:

1. The pressure P_C at C is:

a. 502000 Pa.

- **a.** greater than that at B. **b.** equal to that at B. 2. The value of S is:
- **a.** 3200 cm². **b.** 0.5 cm^2 .
- **3.** The total pressure P_A at A is:

b. 4000 Pa.

c. 106000 Pa.

c. 2 cm^2 .

c. smaller than that at B.

- 4. The total pressure at D is equal to that at A, so the value of h is approximately equal to: **a.** 2.9 cm. **b.** 13.6 cm. **c.** 29 cm.
- 5. We repeat the same experiment at Al Barouk Mountain where the atmospheric pressure is less than P₀. The value of h: c. decreases.

a. remains the same. **b.** increases.

Exercise 2 (6 points) Position of the virtual image given by a converging lens

Document 2 shows a converging lens (L), its optical center O, its optical axis x'x, its object focus F and its image focus F'.

A luminous object (AB) of size AB = 2 cm is placed at a distance d_1 from (L) perpendicularly to the optical axis at A. (A'B') is the image of (AB) given by (L). It is situated at a distance d_2 from (L).

Dire	ction	of pr	opaga	ation (of ligh	t				2 c	m	
						(L)/					2.	5 cm
x' _												X
	F					0				F'		
						Do	c. 2			I		

- **1.** Show that the focal length of (L) is f = 15 cm.
- 2. The adjacent table gives, for different values of d_1 , the corresponding values of d_2 .

2.1. Referring to the table, how does d_2 vary when d_1 increases?

2.2. Out of the following values 5 cm, 15 cm and 40 cm, choose the value corresponds to x.

- **3.** Reproduce, on your graph paper and using the same scale, the document 2.
- 4. The object (AB) is at 7.5 cm from (L).
 - **4.1.** Place (AB) on the preceding reproduction respecting the chosen scale.
 - **4.2.** Construct, without explanation, the image (A'B').
 - **4.3.** Verify graphically the value of x.

Exercise 3 (4 points) Characteristics of the voltage of the mains (Electricity in the home)

The waveform of document 3 represents the variations of the voltage of the mains (u), delivered by EDL (Electricity of Lebanon), as a function of time

1. Referring to document 3:

1.1. indicate the type of the voltage (u).

- **1.2.** show that the maximum voltage U_m of (u) is equal to 310 V.
- **1.3.** calculate its period T.
- 2. Deduce:

2.1. the effective voltage U of (u). Take: $\sqrt{2} = 1.41$.

- **2.2.** its frequency f.
- **3.** On the rating plates of two electric devices, we read the following inscriptions:

Device A	Device B			
110 V ; 60 Hz ; AC ~	220 V ; 50 Hz ; AC ~			

Choose, with justification, the electric device that can function normally when it is fed by the voltage (u).

Exercise 4 (5 points) Normal functioning of the lamp

A lamp (L), carrying the inscriptions (6 W; 12 V), is assumed as a resistor (ohmic conductor) of resistance r.

- 1. Show that the current carried by the lamp (L) while functioning normally is $I_0 = 0.5$ A.
- **2.** Calculate r.
- **3.** The lamp (L) is placed in an electric circuit as shown in document 4.
 - The resistors (R_1) and (R_2) have resistances

 $R_1 = 10 \ \Omega$ and $R_2 = 20 \ \Omega$ respectively.

The ammeter (A), of negligible resistance, displays 0.1A.

- **3.1.** Calculate the value of the voltage U_1 across (R_1).
- **3.2.** Show that the current I_2 carried by (R_2) is 0.05 A.
- **3.3.** Deduce the current I through the lamp (L).

3.4. Does (L) function normally in this circuit? Why?

أسس التصحيح - إنكليزي

Exercise 1 (5 points)

Pressure in liquids

Part	Answer	Mark
1	b. (equal to that at B) since $P_C = P_B = P_{atm}$	1
2	c. $(S = 2 \text{ cm}^2)$ $S = \frac{V}{H} = \frac{80 \text{ cm}^3}{40 \text{ cm}} = 2 \text{ cm}^2$	1
3	c. $(P_A = 106000Pa)$ $P_A = P_{atm} + P_{water}$ $= 102000 + \rho_w \times g \times H$ $= 102000 + 1000 \times 10 \times 0.4$ = 106000 Pa	1
4	a. (h = 2.9 cm) $P_A = P_B$ $106000 = \rho_{Hg} \times g \times h + 102000$ $h = \frac{4000}{136000} = 0.029 \text{ m} = 2.9 \text{ cm}$	1
5	a. (remains the same) since $P_c = P_B = P_{atm}$ (atmospheric pressure is the same on the surfaces of liquids of the two branches)	1

Exercise 2 (6 points) Position of the virtual image given by a converging lens

Part	Answer	Mark						
1	$f = \overline{OF'} = 6 \times 2.5 = 15 \text{ cm}$							
2.1	When d ₁ increases, d ₂ increases							
2.2	x =15 cm							
3	Direction of propagation of light 2 cm E' 2.5 cm X' 4 A' F 4 O F O F O F O F	0.75 Redrawing						
4.1	See graph	0.75						
4.2	See graph	2						
4.3	$x = d_2 = 6 \times 2.5 = 15 \text{ cm}$	0.75						

Part	Answer	Mark
1.1	The type of the voltage (u) is alternating sinusoidal.	0.25
1.2	$U_{\rm m} = y \times S_{\rm v} = 3.1 \times 100 = 310 \text{ V}$	0.75
1.3	$T = x \times S_h = 5 \times 4 = 20 ms = 0.02 s$	0.75
2.1	$U = \frac{U_m}{\sqrt{2}} = \frac{310}{1.41} = 219.85 \text{ V} \approx 220 \text{ V}$	0.75
2.2	$f = \frac{1}{T} = \frac{1}{0.02} = 50 \text{ Hz}$	0.75
3	Device B functions normally, since its characteristics are the same of (u). $U = U_{rated(B)} = 220 \text{ v}$ f = 50 Hz the mode of the voltage is AC.	0.75

Exercise 3 (4 points) Characteristics of the voltage of the mains (Electricity in the home)

Exercise 4 (5 points) Normal functioning of the lamp

Part	Answer	Mark
	$P = U \times I_0$ $I_0 = \frac{P}{U} = \frac{6}{12} = 0.5 \text{ A}$	1
	$P = rI^{2}$ r = $\frac{P}{I^{2}} = \frac{6}{0.5^{2}} = 24 \Omega$	1
3.1	Apply ohm's law across the terminals of (R_1): $U_1 = R_1 \times I_1 = 1$ V	1
3.2	$I_2 = \frac{U_2}{R_2} = \frac{1}{20} = 0.05 \text{ A (U}_1 = U_2 = 1 \text{ V}$ since R ₁ and R ₂ are connected in parallel)	0.5
3.3	(apply the law of addition of current) $I = I_1 + I_2$ I = 0.1+0.05 = 0.15A	1
3.4	No, since I ≠I	0.5