مسابقة في مادة الفيزياء المدة: ساعة واحدة

This exam is formed of four obligatory exercises in two pages Non programmable calculators are allowed

Exercise 1 (4 points) Equilibrium of a solid

الاسم: الرقم:

A spring (R), of stiffness k = 20 N/m, is attached to a fixed support. A solid (S) of mass m is suspended to the free end of the spring (Doc.1). (S) is at equilibrium under the action of two forces: its weight \vec{W} of magnitude W and the tension \vec{T} of the spring of magnitude T = 1.5 N. Take g = 10 N/kg.

The following statements are false. Rewrite them correctly.

- 1. The elongation of the spring at equilibrium is x = 6 cm.
- 2. \overrightarrow{W} is a contact force and \overrightarrow{T} is a force acting from a distance.
- 3. Since (S) is at equilibrium, then the relation between \overrightarrow{W} and \overrightarrow{T} is: $\overrightarrow{W} = \overrightarrow{T}$.
- 4. The mass of (S) is m = 2 kg.

Exercise 2 (5 points)

Nature of a liquid

The aim of this exercise is to identify the nature of a liquid (L). For this, we consider a container that contains a certain quantity of (L) and a solid (S), of volume $V = 5 \times 10^{-5} \text{ m}^3$, suspended to the free end of a spring balance.

Take g = 10 N/kg.

1. (S) is at equilibrium in air (Doc. 2).

The spring balance indicates 3.9 N. What does this indication represent?

- 2. (S) is completely immersed in (L) of density ρ (Doc. 3). The spring balance then indicates 3.5 N.
 - 2.1. What does the indication of the spring balance represent in this case?
 - 2.2. Give the name of the force that led to a different indication on the spring balance.
 - 2.3. Calculate the magnitude of this force.
 - 2.4. Deduce the density ρ of (L).
 - 2.5. By referring to the table below, deduce the nature of (L).

Liquid	Alcohol	Vegetable oil	Olive oil	Acetone	Water
Density (kg/m ³)	800	910	918	792	1000

Doc.2

Doc.3

Exercise 3 (6 points) Nature of a lens

The document 4 shows a lens (L), its optical axis x'x, its optical center O, its two foci M and N, an incident luminous ray (SI) and its emergent ray (IR).

Doc. 4

- 1. (L) is a converging lens. Justify.
- 2. Let f be the focal length of (L).
 - 2.1. N is the image focus of (L). Justify.
 - 2.2. Deduce f.
- 3. Reproduce, on the graph paper, the figure of the document 4.
- 4. Trace, with justification, the path of a luminous ray issued from S and parallel to the optical axis of (L).
- 5. What does the point of intersection of the two emergent luminous rays represent?
- 6. Document 5 represents two different lenses. Specify which lens (a) or (b) corresponds to (L).

Doc.5

Exercise 4 (5 points) Domestic installation

A domestic electric installation is fed by an alternating sinusoidal voltage of effective value 220 V. This installation includes the following electrical appliances connected in parallel:

- an electric oven of 2000 W;
- an iron of 1000 W;
- a heater of 1070 W;
- two identical lamps, acting as ohmic conductors, of resistance $R = 880 \Omega$ each.
- 1. Show that the electric power consumed by each lamp is 55 W.
- 2. Determine, in kWh, the electric energy consumed by each lamp when it functions normally for 20 hours.
- 3. All the appliances function normally at the same time.
 - 3.1. Calculate the total electric power consumed by this installation.
 - 3.2. Deduce the main current I.
 - 3.3. Consider three circuit breakers carrying the inscriptions: 15 A, 20 A and 25 A. Which one is the most convenient for this installation? Justify your answer.

دورة العام ٢٠١٨ العادية الأثنين ٤ حزيران ٢٠١٨

مسابقة في مادة الفيزياء معيار التصحيح

	المتيار التصحيح	
Q	Exercise 1:	4 pts
1.	The elongation of the spring at equilibrium is $x = 7.5$ cm	
	$\left(x = \frac{T}{K} = \frac{1.5}{20} = 0.075 \text{ m} = 7.5 \text{ cm}\right)$	1
2.	Weight \vec{W} is force acting from a distance, Tension of the spring \vec{T} is a contact force.	1
3.	1. Since (S) is at equilibrium, then the relation between \vec{W} and \vec{T} is: $\vec{W} = -\vec{T}$.	
4.	the mass of (S) is $m = 0.15 \text{ kg}$	
	W = T = 1.5 N	1
	$m = \frac{W}{g} = \frac{1.5}{10} = 0.15 \text{ kg}$	
Q	Exercise 2:	5pts
1.	The indication of the spring balance represents the real weight (W _R)	0.75
2.1.	The indication of the spring balance represents the apparent weight (W_{app})	0.75
2.2.	Archimedes up thrust (F)	0.5
2.3.	$F = W_R - W_{app}$	1
	F = 3.9 - 3.5 = 0.4 N	
2.4.	$\rho_{\rm L} = \frac{F}{V_i x g}$ (V _i = V _{cube} = 5x10 ⁻⁵ m ³ completely immersed)	
	$\rho_{\rm L} = \frac{0.4}{5 \times 10^{-5} \times 10} = 800 \text{ kg/m}^3$	1.5
2.5	The nature of the liquid (L) is alcohol since $\rho_L = \rho_{alcohol} = 800 \text{ kg/m}^3$	0.5
		1

Q	Exercise 3:	6 pts
1.	The lens (L) is converging lens since the emergent ray approaches towards the optical axis.	
2.1.	N is the image focus since it is located at the same side of the emergent ray or N is the image focus since it is located at opposite side with the incident ray	1
2.2	$f = \overline{ON} = 1 x5 = 5 cm$	1
3.	See graph	1
4.	Draw from B incident ray parallel to the optical axis which emerges towards image focus N + figure	1
5.	Image S' of point object S.	0.5
6.	Lens (a) is converging lens since it has edges thinner than the centre, then lens (a) is similar to (L)	1
Q	Exercise 4:	5pts
1.	$p = \frac{U^2}{R} = \frac{220^2}{880} = 55 $ W	1
2.	$E = Pxt = 55x10^{-3}x20 = 1.1 \text{ KW.h}$	1
3.1.	$P = P_1 + P_2 + P_3 + 2P_4 = 2000 + 1000 + 1070 + 55x2 = 4180 W$	1

3.1.	$P = P_1 + P_2 + P_3 + 2P_4 = 2000 + 1000 + 1070 + 55x2 = 4180 W$	1
3.2	$P_{t} = UI I = \frac{P}{U} = \frac{4180}{220} = 19 \text{ A}$	1
3.3	The circuit breaker of 20 A is the most convenient since it is slightly more than the consumed current.	1