دورة العام ٢٠١٨ العادية

السبت ۹ حزيران ۲۰۱۸

مكيّفة/ احتياجات خاصة

مسابقة في مادة الفيزياء

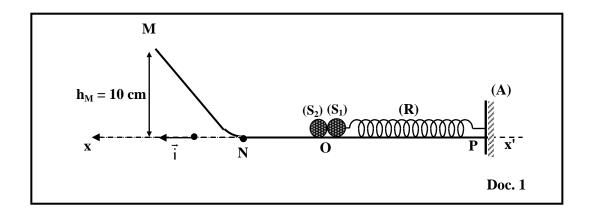
المدة: ساعتان

(اللغة الإنكليزية)

الاسم: الرقم:.

Exercise 1 (7 points)

Determination of the stiffness of a spring


In order to determine the stiffness k of a massless spring (R), we consider:

- a track MNP found in a vertical plane;
- a massless spring (R) of horizontal axis and stiffness k,
 - having one end fixed to a support (A);
 - the other end is connected to an object (S_1) considered as a particle of mass $m_1 = 0.2 \text{ kg}$;
- an object (S_2) considered as a particle of mass $m_2 = 0.3$ kg.
 - (S_2) is placed at O of a horizontal x-axis of unit vector \dot{i} (Doc. 1).

Neglect all the forces of friction.

Take:

- the horizontal plane passing through NP as a reference level for gravitational potential energy;
- $g = 10 \text{ m/s}^2$.

1- Collision between (S_1) and (S_2)

At equilibrium, (S_1) coincides with O.

- (S₁) is shifted from O to the right by a certain distance and it is released from rest.
- (S₁) reaches O with a velocity $\overrightarrow{V}_1 = 2 i$ (m/s), and enters into a head-on collision with
- (S_2) initially at rest.

Just after collision, (S₁) rebounds with a velocity $\overrightarrow{V}'_1 = -0.4 \ \dot{i} \ (\text{m/s})$.

- (S₂) moves to the left with a velocity $\overrightarrow{V_2'} = V_2' \, i$.
- **1-1)** Applying the principle of conservation of linear momentum for the system $[(S_1), (S_2)]$, show that $V_2' = 1.6$ m/s.
- 1-2) Calculate the kinetic energy of the system $[(S_1), (S_2)]$ just before collision. Calculate the kinetic energy of the system $[(S_1), (S_2)]$ just after collision. Deduce that this collision is elastic.

2- Motion of (S₂) after collision

Just after collision, (S_2) moves along the horizontal track PN with the speed V_2' and then continues its motion along the inclined plane MN.

(S₂) leaves the inclined plane at M with a speed V_M.

The height of M above the reference level is $h_M = 10$ cm.

Show that the value of the speed is $V_M = 0.748$ m/s.

3- Oscillation of (S_1)

After collision, (S_1) oscillates along the x-axis.

At an instant t, the abscissa of (S_1) is x and the algebraic value of its velocity is $v = \frac{dx}{dt}$.

- **3-1)** Write, at an instant t, the expression of the mechanical energy of the system $[(S_1)$, spring, Earth] in terms of m_1 , k, x and v.
- **3-2)** Show that the <u>second order differential equation</u> in x that describes the motion of (S_1) is given by: $x'' + \frac{k}{m}x = 0$.
- **3-3)** Deduce the expression of the proper period T_0 .
- **3-4)** Calculate $\underline{\mathbf{k}}$ knowing that $T_0 = 0.314 \text{ s.}$

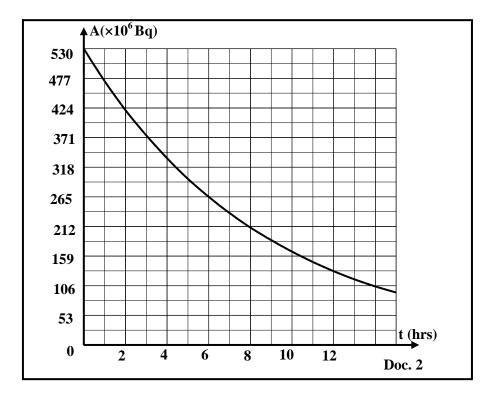
Exercise 2 (6 points)

Scintigraphy in medicine

The bones scintigraphy is a medical examination that permits to observe bones and articulations. The aim of this exercise is to study a radioactive sample used in this scintigraphy.

This medical examination uses technetium-99 produced due to the disintegration of molybdenum-99 according to the following nuclear reaction:

$$^{99}_{42}\text{Mo} \rightarrow ^{99}_{43}\text{Tc} + ^{A}_{Z}X + \gamma$$


The energy of the emitted gamma (γ) photon is 140 keV.

Given:
$$c = 3 \times 10^8 \text{ m.s}^{-1}$$
; $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$;
Planck's constant $h = 6.6 \times 10^{-34} \text{ J.s.}$

- 1- Identify the emitted particle ${}_{7}^{A}X$, indicating the used laws.
- **2-** The emitted particle ${}_{Z}^{A}X$ is always accompanied with the emission of another particle. **Name** this particle.
- **3- Indicate** the cause of the emission of the gamma photon.
- 4- Calculate the wavelength of the emitted gamma photon.

5- Technetium-99 is a radioactive substance.

The graph of document 2 represents the activity of a sample of technetium-99 as a function of time.

Using document 2, **show that** the radioactive period (half-life) of technetium-99 is T = 6 hrs.

6- In a session of scintigraphy examination, a patient is injected at $t_0 = 0$ by techenetium-99 of activity $A_0 = 530 \times 10^6$ Bq.

At the end of the examination session, the activity of technetium in the body of the patient is 63% of its initial value.

6-1) Write, at instant t, the expression of the activity A in terms of A_0 , t and the decay constant λ .

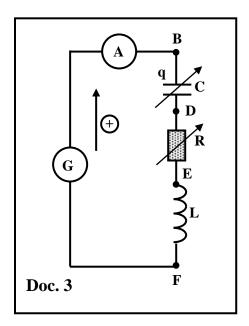
6-2) Using the preceded expression:

6-2-1) **Show** that the duration of the examination session is 4 hrs.

6-2-2) Determine the ratio
$$\frac{A}{A_0}$$
 of technetium-99 at $t = 40$ hrs.

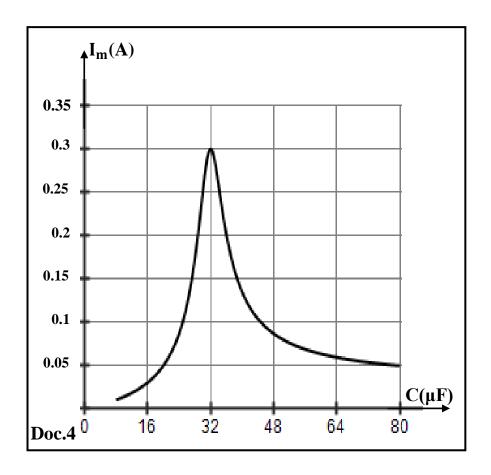
Exercise 3 (7 points)

RLC series circuit in the radio


One of the useful applications of an RLC series circuit is used in radios.

This exercise studies the effect of the capacitance C on the detection of the radio wave and the effect of the resistance R on the loudness of the sound emitted by the radio.

1- Experimental study of an RLC series circuit


Document 3 represents an RLC series circuit formed of:

- a capacitor of adjustable capacitance C;
- a resistor of adjustable resistance R;
- a coil of inductance L = 0.317 H and negligible resistance;
- an ammeter (A) of negligible resistance.

This circuit is connected across a generator (G) maintains across its terminals an alternating sinusoidal voltage $\mathbf{u}_G = \mathbf{u}_{BF} = 3\sin(\omega t)$, (\mathbf{u}_G in \mathbf{V} , t in s) and $\omega = 314$ rad/s. The expression of the current in the circuit is $\mathbf{i} = \mathbf{I}_m \sin(\omega t + \varphi)$.

For each value of C, the ammeter permits to obtain the amplitude I_m of the current i. The graph of document 4 represents I_m as a function of C.

- **1-1)** Indicate the value C_0 of C at which I_m attains a maximum value.
- **1-2)** Calculate the value of $LC_0\omega^2$.
- **1-3)** Name then the <u>electric phenomenon observed</u> on document 4.
- 1-4) The capacitance of the capacitor is $C = 32 \mu F$.
 - **1-4-1**) **Pick** out graphically the value of I_m .
 - 1-4-2) Show that the expression of the current is given by:

 $i = 0.3 \sin(314 t)$, (i in A, t in s).

- **1-4-3) Determine** the expression of the voltage $u_L = u_{EF}$ across the terminals of the coil as a function of time \mathbf{t} .
- **1-4-4) Determine** the expression of the voltage $u_C = u_{BD}$ across the terminals of the capacitor as a function of time t knowing that $i = C \frac{du_C}{dt}$
- **1-4-5) Show that** $u_R \sqcup u_G = 3 \sin(314t)$, **using** the law of addition of voltages $u_G = u_C + u_L + u_R \quad \text{(knowing that } u_R = u_{DE} \text{ is the voltage across the resistor)}.$
- 1-4-6) Deduce the value of R knowing that $U_m = R I_m$.
- 1-4-7) We decrease the value of R to 2 Ω . Calculate the new value of the maximum current in the circuit using the relation $u_R = u_G$.

2 - RLC series circuit in the radio

Each radio station broadcasts an electromagnetic wave (radio wave) of precise frequency f.

When this radio wave of frequency f is received by the antenna of a radio, it is converted into electric sinusoidal signal of same frequency f; thus the antenna plays the role of a generator and feeds the RLC series circuit in the radio.

Given:

- the inductance of an RLC series circuit in a radio is L = 0.2 mH;
- the values of R and C can be adjusted;
- when the circuit enters an electric phenomenon similar to that of part (1-3) the antenna receives the desired frequency of the wave of the broadcast ($LC_0\omega^2 = 1$).
 - **2-1) Determine** the value of C so that the antenna receives a radio wave of desired frequency 1000 kHz.
 - **2-2)** To increase the intensity of the emitted sound by the radio we have to increase the value of the current in the circuit. **Indicate** whether we have to increase or decrease the resistance R in order to increase the intensity of the emitted sound by the radio.