
 مكيفة / احتياجات خاصة

امتحانات الثهادة الثانوية العامة
فرع علوم الحياة
مسابقة في مادة الرياضيات المدة: ساعتان

وزارة التربية والتعليم العلالي
المديرية العامة للتربية
دائرة الامتحانات الرسمية

الاسم:
الرقم:

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة لللبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشَح الإجابة بالترتيب الذي يناسبه (دون الالتز ام بنرتيب المسائل الواردة في المسابقة)

مسابقة في مادة الرياضيات الددة: ساعتان (باللغة الإنكليزية)

I- (4 points)

In the space referred to a direct orthonormal system $(\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}}, \overrightarrow{\mathrm{k}})$, consider the two points $\mathrm{A}(0,1,2)$ and $\mathrm{B}(2,0,2)$ and the plane (P) with equation $\mathrm{x}+2 \mathrm{y}-2=0$.

1) Verify that the two points A and B are in plane (P).
2) Let (Q) be the plane with equation $\mathrm{Z}-2=0$.

- Show that (AB) is contained in (Q).
- Show that (P) is perpendicular to (Q).

3) Let $(L):\left\{\begin{array}{l}x=t+2 \\ y=2 t \\ z=2\end{array} \quad(t \in \mathbf{R})\right.$ be the line perpendicular to plane (P) at B.
a- Show that (L) lies in plane (Q).
b- Let E be a point of (L) with $\mathrm{y}_{\mathrm{E}}>0$.
Determine the coordinates of the point E so that triangle ABE is right isosceles with vertex B.
c- Let I $\left(\frac{3}{2}, \frac{3}{2}, 2\right)$ be the midpoint of [AE]. Consider in plane (Q) the circle (C) with center I and passing through B.

Write_a system of parametric equations of the line (T) tangent to (C) at B.

II- (4 points)

The customer service department in a supermarket organizes a game to offer vouchers to its clients. For this purpose, an urn is placed at the entrance of the supermarket. The urn contains:

- three red balls each holding the number 10000
- two white balls each holding the number 30000
- one black ball holding the number -10000 .

A client who wants to participate in the game selects, simultaneously and randomly, three balls from the urn.

Consider the following events:
A : " the three selected balls have the same color "
B: " the three selected balls have three different colors "
C : " only two of the three selected balls have the same color "

1) a- Calculate the probability $P(A)$.

Calculate the probability $\mathrm{P}(\mathrm{B})$.
b- Show that $\mathrm{P}(\mathrm{C})=\frac{13}{20}$.
2) A client who participates in the game receives a voucher whose value, in LL, is equal to the sum of the numbers on the three selected balls.

Let X be the random variable equal to the value of the voucher received by the client. a- Verify that the possible values of X are: $10000,30000,50000,70000$.
b- Show that $\mathrm{P}(\mathrm{X}=50000)=\frac{7}{20}$.
c- Show that $\mathrm{P}(\mathrm{X}>35000)=\frac{1}{2}$.
d- Knowing that a client made purchases with a voucher whose value is greater than 35000 LL,
calculate the probability that exactly one red ball is selected from the urn.

III- (4 points)

The complex plane is referred to a direct orthonormal system $(O ; \vec{u}, \vec{v})$. For all points M of the plane with affix $\mathrm{z} \neq 0$, we associate the point M^{\prime} with affix z^{\prime} such that $\mathrm{z}^{\prime}=\frac{\mathrm{z}-5 \mathrm{i}}{\mathrm{z}}$.

1) Write z in exponential form in the case where $\mathrm{z}^{\prime}=\frac{1}{2}-\frac{1}{2} \mathrm{i}$.
2) Denote by E the point with affix $\mathrm{Z}_{\mathrm{E}}=1$.
a- Verify that $Z^{\prime}-1=\frac{-5 i}{z}$.
b- Calculate EM^{\prime} when $\mathrm{OM}=5$.
3) Suppose that $z=x+i y$ and $z^{\prime}=x^{\prime}+i y^{\prime}$ with x, y, x^{\prime} and y^{\prime} being real numbers.
a- Show that $x^{\prime}=\frac{x^{2}+y^{2}-5 y}{x^{2}+y^{2}}$ and $y^{\prime}=\frac{-5 x}{x^{2}+y^{2}}$.
b- Deduce that when m^{\prime} moves on the line with equation $\mathrm{y}=\mathrm{x}$, M moves on a circle whose center and radius are to be determined.

Consider the function f defined on \square as $\mathrm{f}(\mathrm{x})=1-2 \mathrm{e}^{-\mathrm{x}}$ and denote by (C) its representative curve in an orthonormal system $(\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}})$.

1) a-_Determine $\lim _{x \rightarrow-\infty} f(x)$
b-_Calculate $\mathrm{f}(-1)$.
2) a- Determine $\lim _{x \rightarrow+\infty} f(x)$.
b- Deduce an equation of the asymptote (d) to (C).
c- Show that (C) is below (d) for all x in \square.
3) The curve (C) intersects the x-axis at A and the y-axis at B.

Find the coordinates of A and B.
4) a- Calculate $f^{\prime}(x)$
b- Set up the table of variations of f.
c- Draw (C) and (d).
5) a- Show that f has, on \square, an inverse function g.
b- Determine the domain of definition of g .
c- Verify that $g(x)=\ln (2)-\ln (1-x)$.
6) Let $\left(\mathrm{C}^{\prime}\right)$ be the representative curve of g and let F be the point of $\left(\mathrm{C}^{\prime}\right)$ with abscissa 0 . a- Determine an equation of the tangent (T) to $\left(\mathrm{C}^{\prime}\right)$ at F .
b- Draw $\left(\mathrm{C}^{\prime}\right)$ and (T) in the same system as that of (C).
7) Calculate the area of the region bounded by (\mathbf{C}^{\prime}), the \mathbf{x}-axis and the \mathbf{y}-axis.

