دورة المعام ٢٠١٨ العاديّة	امتحانات الشهادة الثانوية العامة	وزارة التربية والتعليم العالي
الثلاثاء ١٢ حزيران ٢٠١٨	فرع: علوم الحياة	المديريّـة العامة للتربية
مكيفة / إحتياجات خاصة		دائرة الامتحانات الرسمية
الاسم:	مسابقة في مادة الكيمياء	
الرقم:	المدة: ساعتان	

This Exam Includes Three Exercises. It Is Inscribed on ten Pages Numbered from 1 to 10. The Use of A Non-programmable Calculator Is Allowed.

مسابقة في الكيمياء (باللّغة الإنكليزية) المدة: ساعتان

الاسم:

الرقم:

Answer the Three Following Exercises:

Exercise 1 (7 points) Properties of an Alcohol

The aim of this exercise is to study the chemical properties of the alcohol (A) and its reaction with methanoic acid.

Given: Molar mass in g.mol⁻¹: $M_{(H)} = 1$; $M_{(C)} = 12$; $M_{(O)} = 16$.

1. Chemical properties of the Alcohol (A)

Available is a saturated and non-cyclic mono-alcohol denoted (A). The quantitative analysis of alcohol (A) shows that the percentage by mass of oxygen is %O = 21.62%

- **1.1.** Knowing that the general molecular formula of saturated monoalcohol is $C_nH_{2n+2}O$, **calculate** in terms of n, <u>the molar mass</u> of alcohol (A).
 - Show that the <u>molecular formula</u> of the alcohol (A) is $\underline{C_4H_{10}O}$.
- **1.2.** The condensed structural formula of the alcohol (A) is:

- **1.2.1. Indicate** the class of alcohol (A).
- 1.2.2. Give its systematic name.
- **1.2.3**. the three alcohol isomers of (A) is:

1- Butanol	2- Methyl-1-propanol	2- Methyl-2- propanol

Write the condensed structural formulas of these three alcohol isomers.

Page 2 / 10

1.2.4. Justify that the molecule of the alcohol (A) is chiral.

1.2.5. The alcohol (A) possesses two enantiomers. One of them is represented according to Cram by the following structure:

Represent the second enantiomer of alcohol (A).

1.3. The mild oxidation of the alcohol (A) by a solution of acidified potassium permanganate leads to the formation of an organic compound (B). Choose the correct answer:

1.3.1.

The systematic name of (B) is :	butanal
	butanone
	butanoic acid

1.3.2.

the compound (B) gives with the 2,4-DNPH :	a white crystals
	a yellow- orange precipitate
	a black precipitate

2. Reaction of the Alcohol (A) With Methanoic Acid

A mixture of <u>0.2 mol of alcohol (A)</u> and <u>0.2 mol of methanoic acid is heated to reflux</u>, in the presence of few drops of concentrated sulfuric acid as a catalyst.

The esterification reaction is represented by the following equation:

methanoic acid + alcohol (A) \rightleftharpoons ester (E) + water

2.1. Copy and **Complete**, by using the condensed structural formula, the equation of the following esterification reaction:

```
HCOOH + CH_3 - CH_2 - CH OH - CH_3 \rightleftharpoons \dots + \dots + \dots
```

At an instant **t** the equilibrium is reached.

The number of moles of methanoic acid remained at equilibrium is $n_{(acid)} = 0.08$ mol.

2.2. Complete the following table:

	methanoic acid + alcohol (A) \rightleftharpoons ester (E) + water			
t = 0 min	0.2 mol	0.2 mol	0	0
t at equilibrium	0.08 mol			

2.3. Give the expression of the equilibrium constant Kc.

Calculate its value.

2.4. The same experiment is carried out again with only one change: "without the addition of concentrated sulfuric acid" .The equilibrium state is reached at an instant of time t'.

Choose the correct answer. Justify.

a.
$$t > t'$$
 b. $t = t'$ **c.** $t < t'$

Exercise 2 (6 points) Kinetic of the Oxidation of Javel Water with Ammonia

In an aqueous solution, ammonia (NH₃) reacts with hypochlorite ions ($C\ell O^{-}$) in a slow and complete reaction that takes place according to the equation below:

$$2 \text{ NH}_{3 (aq)} + 3 \text{ ClO}_{(aq)}^{-} \longrightarrow N_{2 (g)} + 3 \text{ Cl}_{(aq)}^{-} + 3 \text{ H}_{2} O_{(l)}$$

The aim of this exercise is to study the kinetic of this reaction.

Javel water is a sodium hypochlorite aqueous solution $(Na^+ + C\ell O^-)$

Document- 1

1. Preparation of a Javel Water Solution (S₁)

A volume $V_1 = 250 \text{ mL}$ of the solution (S_1) of molar concentration $C_1 = 0.25 \text{ mol.L}^{-1}$ is prepared by diluting 25 times a commercial Javel water solution (S_0).

- **1.1. Show that** the volume V_o withdrawn from solution (S_o) to prepare 10 mL of the solution (S_1).
- 1.2. Choose, from document- 2, the essential glassware needed to carry out the preparation of solution (S₁):
 - To withdraw: V_{0} .
 - To contain the solution (S₁):

Beakers	100 mL	250 mL	500 mL
volumetric flask	100 mL	250 mL	500 mL
graduated cylinder	5 mL	10 mL	25 mL
volumetric pipet	5 mL	10 mL	25 mL

Document-2

2. Kinetic Study

A volume $V_1=200 \text{ mL}$ of a solution (S₁) of Javel water solution of molar concentration $C_1 = 0.25 \text{ mol.L}^{-1}$ is mixed with an excess of ammonia solution at constant temperature T = 27 °C.

Using an appropriate method, the number of moles of nitrogen gas N_2 formed is determined at different instant t, the results obtained are grouped in the table of **document-3**:

t (min)	2	4	6	8	10	12	16
$n(N_2) (10^{-3} mol)$	4.3	8.0	10.3	12.0	13.3	14.3	15.5

- **2.1. Show that** the initial number of moles of hypochlorite ions $C\ell O^-$ is equal 5×10^{-2} mol.
- **2.2. Calculate** the number of moles of N_2 expected to be obtained at the end of the reaction.

Verify whether the instant of time t = 16 min represents the end of the

reaction.

2.3. Plot the curve representing the variation in the number of moles of (N_2) as a function of time:

 $n(N_2) = f(t)$ within the interval of time [0 - 16 min].

Take the following scales: In abscissas: 1cm for 1 min;

In ordinates: 1cm for 1×10^{-3} mol.

2.4. Deduce, graphically, the variation of the rate of formation of (N_2) as a function of time.

2.5. Choose the correct answer:

a. $r_{(ClO^-)t} = 3 r_{(N2)t}$ **b.** $r_{(ClO^-)t} = \frac{r(N2)t}{3}$ **c.** $r_{(ClO^-)t} = r_{(N2)t}$

Knowing that:

 $r_{(N2)t}$:the rate of formation of (N_2) at an instant of time t.

 $r_{(C\ell O)t}$: the rate of disappearance of $C\ell O^{-}$ at the same instant t.

2.6. Define the half- life time of the reaction $t_{1/2}$.

Determine graphically this time.

2.7. The same kinetic study is carried out but with one change: it takes place in this case at temperature T' higher than $27 \,^{\circ}$ C.

Specify, in this study, whether the following statement is true or false:

The number of moles of nitrogen gas (N₂) formed at t = 4 min becomes less than 8.0×10^{-3} mol, given value in **document- 3**.

Ethanoic acid is <u>a weak acid</u> of formula CH₃COOH.

The aim of this exercise is to study the behavior of ethanoic acid in water and to determine its molar concentration by pH-metric titration.

Given: - This study is carried out at 25 °C.

- pKa of the pair (CH₃COOH / CH₃COO⁻) = 4.8

1. Study of the Behavior of Ethanoic Acid in Water

In the laboratory, available is a flask containing an ethanoic acid solution (S) of unkown molar concentration C_a .

1.1. Complete the equation of the reaction of ethanoic acid CH₃COOH with water:

$$CH_{3}COOH + H_{2}O \rightleftharpoons ... A ... + ... B ...$$

- **1.2.** Knowing that α is the degree of dissociation of ethanoic acid in water.
 - Complete the following table :

	$CH_{3}COOH + H_{2}O \rightleftharpoons A + B$			
Initial state	Ca	excès	0	0
Equilibrium state	$C_a - C_a \alpha$	excès	?	?

- **verify** the following relation:

 $\frac{[CH_3COO^-]}{[CH_3COOH]} = \frac{\alpha}{1-\alpha}$

1.3. Show that the value of α is close to 0.04, knowing that:

- pH of the solution (S) is equal to 3.4

- The pH is calculated by this relation pH = pKa (acide / base) + log $\frac{[base]}{[acide]}$

1.4. Based on the value of α , **justify** that ethanoic acid is a weak acid.

2-Titration of the Ethanoic Acid Solution (S)

Into a beaker, introduce a volume $V_a = 20.0$ mL of the ethanoic acid solution (S) and a certain volume of distilled water to immerse properly the pH-meter electrode. A sodium hydroxide solution (Na⁺ + HO⁻) of molar concentration $C_b = 2.0 \times 10^{-2}$ mol.L⁻¹ is added progressively. A sample of the experimental results is given in **document-1** :

V _b (mL)	0	5	10	15	
pH	3.5	4.8	$pH_{\rm E}$	11.2	
Document-1					

2.1.Choose, From the <u>given material</u> of **document-2**, the most suitable ones needed to carry out the titration.

- Volumetric flasks: 50 and 100 mL
- Beaker : 100 mL
- Graduated cylinders: 10, 20 and 50 mL
- Magnetic stirrer and its bar
- Graduated buret : 25 mL
- pH meter and its electrode
- Precision balance

Document-2

- 2.2.Write the equation of the titration reaction between CH₃COOH and HO⁻ions.
- **2.3.**Based on the chemical species present in the beaker at equivalence. **Specify** the point that represents the equivalence point:

A ($V_{bE} = 10 \text{ mL}$; $pH_E = 8.3$);

- B ($V_{bE} = 10 \text{ mL}$; $pH_E = 7$);
- C ($V_{bE} = 10 \text{ mL}$; $pH_E = 5.8$).

- **2.4.Determine** the molar concentration of ethanoic acid in the solution (S).
- **2.5.Plot** the shape of the curve representing the change in the pH as a function of the volume of the base added $pH = f(V_b)$ passing by the four remarkable points extracted from the table of **document-1**.

Take the following scales: In abscissa 1 cm = 1 mL;

In ordinates; 1 cm = 1 unit of pH.

- **2.6. Plot** the predominance axis of the chemical species of the pair CH_3COOH / CH_3COO^- .
 - Referring to **document-1** and using the predominance axis **specify** the chemical species which predominates at the end of the titration for $V_b = 15$ mL.