

This exam is formed of three exercises in two pages. The use of non-programmable calculator is recommended

Exercise 1: ($7^{1 / 2}$ points)

Mechanical energy

A girl standing on a platform throws a stone, considered as a particle of mass $m=0.1 \mathrm{~kg}$, vertically upwards from point A found at a height $\mathrm{h}_{\mathrm{A}}=30 \mathrm{~m}$ above sea level. The stone is launched from point A with a speed $\mathrm{V}_{\mathrm{A}}=12 \mathrm{~m} / \mathrm{s}$, reaches its maximum height at point B , and then it falls down to reach point C at sea level (Doc. 1).

Take:

- the sea level as a gravitational potential energy reference for the system [stone, Earth];
- $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

1- Calculate, at point A , at the launching instant:
1-1) the kinetic energy of the stone;
1-2) the gravitational potential energy of the system [stone, Earth];
1-3) the mechanical energy of the system [stone, Earth].
2- In this part, air resistance is neglected.
2-1) Specify the value of the mechanical energy of the system [stone, Earth] at point B.
2-2) Determine the maximum height h_{B} reached by the stone above sea level.

2-3) Determine the speed V_{C} of the stone as it reaches point C.

3- In reality air resistance is not neglected. The stone reaches point C with a speed $V_{C}^{\prime}=21 \mathrm{~m} / \mathrm{s}$.
3-1) Calculate the new value of the mechanical energy of the system [stone, Earth] at point C.
3-2) Calculate the decrease in the mechanical energy of the system [stone, Earth] between points A and C.
3-3) In what form of energy does this decrease in mechanical energy appear?

Exercise 2: ($6^{1 ⁄ 2}$ points)

The americium-241 nucleus

The americium nucleus ${ }_{95}^{241} \mathrm{Am}$ is a radioactive nucleus which is usually used in archeology.

1- Indicate the number of protons and that of nucleons in the nucleus of americium ${ }_{95}^{241} \mathrm{Am}$.
2- The reaction of disintegration of americium ${ }_{95}^{241} \mathrm{Am}$ is given by :

$$
{ }_{95}^{241} \mathrm{Am} \rightarrow{ }_{93}^{237} \mathrm{~Np}+{ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}+\gamma
$$

2-1) Define radioactivity.
2-2) Calculate A and Z indicating the used laws.
2-3) Indicate the name and the symbol of the emitted particle ${ }_{Z}^{A} X$.
2-4) This disintegration is accompanied with the emission of γ radiation. Indicate:
2-4-1) the cause of the emission of the γ radiation;
2-4-2) the nature of the γ radiation.
3- The energy liberated due to this disintegration of the americium- 241 nucleus is $\mathrm{E}=5.63 \mathrm{MeV}$. Calculate, in kg , the mass defect $\Delta \mathrm{m}$ due to this disintegration.
Given:
$1 \mathrm{MeV}=1.6 \times 10^{-13} \mathrm{~J}$; speed of light in vacuum $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Exercise 3: (6 points)

Mars

Mars, the red planet, is the fourth planet according to its average distance from the Sun.
It is a terrestrial planet which can be observed by the naked eye.
The period of revolution of Mars is $\mathrm{T}_{\mathrm{M}}=1.881$ years, whereas that of Earth is $\mathrm{T}_{\mathrm{E}}=1$ year $=365.25$ days.

Doc. 2

1- Name the terrestrial planets of our solar system.
2- Pick out from document 2 an indicator which shows that Mars:
2-1) is a rocky planet;
2-2) contains large quantities of iron oxide in the rocks and stones scattered on its surface.
3- Document 2 indicates the periods of revolution of Mars and Earth.
3-1) What does the «period of revolution » of a planet represent?
3-2) Calculate, in days, the period of revolution of Mars.
3-3) Using the periods of revolution of Mars and Earth, specify which of the two planets is closer to the Sun.
3-4) State Kepler's law which confirms the answer of question (3-3).

الجمعة 1 حزيران

اسس التصحيح - فيزياء
فرعا: الاجتمـاع والالتّصاد والآداب والإنسـانيـات

وزارة التربية والتعليم العاللي المديريّــة العامـة للتربيـة دائرة الالمتحانـات الرسمية

مسابقة في الثقةافة العلميةّـ مـادة الفيزياء

أسس التصحيح
Exercise 1: (7 points)
Mechanical energy

Part		Answer	Grade
1	1-1	$\mathrm{KE}_{(\mathrm{A})}=\frac{1}{2} \mathrm{mV}_{\mathrm{A}}^{2}=\frac{1}{2} \times 0.1 \times(12)^{2}=7.2 \mathrm{~J}$	1
	1-2	$\mathrm{PE}_{\mathrm{g}(\mathrm{A})}=\mathrm{mgh}_{\mathrm{A}}=0.1 \times 10 \times 30=30 \mathrm{~J}$	1
	1-3	$\mathrm{ME}_{(\mathrm{A})}=\mathrm{KE}_{(\mathrm{A})}+\mathrm{PE}_{\mathrm{g}(\mathrm{A})}=7.2+30=37.2 \mathrm{~J}$	1
2	2-1	$\mathrm{ME}_{\mathrm{B}}=\mathrm{ME}_{\mathrm{A}}$ because air resistance is neglected Then, $\mathrm{ME}_{\mathrm{B}}=37.2 \mathrm{~J}$	$\begin{gathered} \hline 0.25 \\ 0.25 \\ 0.5 \\ \hline \end{gathered}$
	2-2	$\mathrm{ME}_{\mathrm{B}}=\mathrm{KE}_{\mathrm{B}}+\mathrm{P} \cdot \mathrm{E}_{\mathrm{g}(\mathrm{~B})}$ But $\mathrm{KE}_{\mathrm{B}}=0$ (Stone is at maximum height) Then, $\mathrm{ME}_{\mathrm{B}}=\mathrm{PE}_{\mathrm{g}(\mathrm{B})}=\mathrm{mg} \mathrm{h}_{\mathrm{B}}$ $37.2=0.1 \times 10 \times \mathrm{h}_{\mathrm{B}} ; \mathrm{h}_{\mathrm{B}}=37.2 \mathrm{~m}$	$\begin{gathered} 0.25 \\ 0.25 \\ 0.5 \end{gathered}$
	2-3	$\mathrm{ME}_{\mathrm{C}}=\mathrm{KE}_{\mathrm{C}}+\mathrm{PE}_{(\mathrm{g}) \mathrm{C}}$ But $\mathrm{PE}_{(\mathrm{g}) \mathrm{C}}=0$ (Stone is at reference level) Then, $\mathrm{ME}_{\mathrm{C}}=\mathrm{KE}_{\mathrm{C}}=37.2 \mathrm{~J}$ $37.2=\frac{1}{2} \times 0.1 \times \mathrm{V}_{\mathrm{C}}^{2} ; \mathrm{V}_{\mathrm{C}}=27.27 \mathrm{~m} / \mathrm{s}$	$\begin{gathered} 0.25 \\ 0.25 \\ 0.5 \end{gathered}$
3	3-1	$\mathrm{ME}_{\text {new }}=\mathrm{KE}_{\text {new }}+\mathrm{PE}_{(\mathrm{g}) \text { sea level }}$ But $\mathrm{PE}_{(\mathrm{g})}$ sea level $=0($ On the reference level $)$ $\mathrm{ME}_{\text {new }}=\frac{1}{2} \times 0.1 \times(21)^{2}=22.05 \mathrm{~J}$	0.5
	3-2	The mechanical energy decreases by: $\mathrm{ME}_{\mathrm{A}}-\mathrm{ME}_{\mathrm{C}}=37.2-22.05=15.15 \mathrm{~J}$	0.5
	3-3	The form is thermal energy	0.5

Exercise 2 ($61 / 2$ points)

The americium- 241 nucleus

Question			Answers	Mark
1			The number of protons is $\mathrm{Z}=95$ The number of nucleons is $\mathrm{A}=241$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$
2	2-1		Radioactivity is a spontaneous transformation of a nucleus into another, with emission of radioactive radiation.	1
	2-2		Laws of conservation of mass number and charge number (Soddy's laws) $\begin{aligned} & 241=237+A, \text { then } A=4 \\ & 95=93+Z, \text { then } Z=2 \end{aligned}$	$\begin{gathered} 0.25 \\ 0.5 \\ 0.5 \end{gathered}$
	2-3		Helium nucleus Symbol : ${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}={ }_{2}^{4} \mathrm{He}$	$\begin{array}{r} 0.25 \\ 0.5 \end{array}$
	2-4	2-4-1	Gamma radiation is emitted due to the downward transition (deexcitation) of the daughter nucleus ${ }_{93}^{237} \mathrm{~Np}$	0.5
		2-4-2	Electromagnetic radiation	0.5
3			$\begin{aligned} & \mathrm{E}=\Delta \mathrm{m} \mathrm{c}^{2} \\ & \Delta \mathrm{~m}=\frac{\mathrm{E}}{\mathrm{c}^{2}} ; \Delta \mathrm{m}=\frac{5.63 \times 1.6 \times 10^{-13}}{\left(3 \times 10^{8}\right)^{2}} \\ & \quad=1.00088 \times 10^{-29} \mathrm{~kg} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \hline \end{aligned}$

Exercise 3 (6 points)

Mars

Question		Answer	Mark
	1	Mercury, Venus, Earth and Mars	1
2	2-1	It is a terrestrial planet	0.5
	2-2	The red planet	0.5
3	3-1	The period of revolution is the duration (or time needed) of one complete revolution of the planet around the Sun.	1
	3-2	$\mathrm{T}_{\mathrm{M}}=1.881 \times 365.25=687.035$ days.	1
	3-3	$\mathrm{T}_{\mathrm{M}}=1.881$ years $>\mathrm{T}_{\mathrm{E}}=1$ year Therefore, the Earth is closer to the Sun.	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$
	3-4	Statement of Kepler's $3^{\text {rd }}$ law : The period of revolution of the planet increases with the average distance from the Sun.	1

