امتحانات الشهادة الثانوية العامة فرع: الإجتماع والإقتصاد

وزارة التربية والتعليم العالي المديريّـة العامة للتربية دائرة الامتحانات الرسمية

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

مسابقة في مادة الرياضيات

المدة: ساعتان

باللغة الإنكليزية

الاسم : الرقم :

I- (4 points)

A restaurant distributes brochures each month for advertisement.

The table below shows the number of distributed brochures (y_i) in thousands and the monthly cost of distribution (x_i) in hundred thousands LL.

Cost of distribution (x _i)	1	3.5	2	5	1.5	2.4
in hundred thousands LL	1	3.3	2	<i>3</i>	1.3	2.4
Number of distributed						
brochures (y _i) in	1.2	6.4	2.6	7.2	2.1	3.2
thousands						

- 1) Find the coordinates of the center of gravity $G(\bar{x}, \bar{y})$.
- 2) **Represent** the scatter plot (x_i, y_i) in a rectangular system
 - Plot G.
- 3) **-Write** an equation of the regression line $(D_{y/x})$
 - draw this line in the preceding system.
- 4) Find the correlation coefficient r interpret the value found.
- 5) The above model remains valid in the year 2018.

Month	January	February	March	April	May	June
Month	2018	2018	2018	2018	2018	2018
Cost of distribution (x _i)	1	3.5	2	5	1.5	2.4
in hundred thousands LL	1	3.3	2	3	1.5	2.4
Number of distributed						
brochures (y _i) in	1.2	6.4	2.6	7.2	2.1	3.2
thousands						

The restaurant manager receives an advertisement offer for the month of July 2018.

This offer indicates: "4 000 distributed brochures for only 250 000 LL".

Justify that <u>this offer</u> is better than the model of the regression line $(D_{y/x})$.

II- (4 points)

Part A

One student is randomly selected from the third secondary students of this school.

Consider the following events:

E: "The selected student is in the ES section",

G: "The selected student is in the GS section",

L: "The selected student is in the LS section",

S: "The selected student succeeded in the official exam".

Those students are distributed as follows:

	Е	G	L	Total
S	12 %	8 %		60 %
\bar{s}				
Total	50 %	10 %	40 %	100 %

1) a- Calculate the probabilities $P(E \cap S)$ and $P(G \cap S)$.

b- **Prove** that $P(L \cap S) = 0.22$.

2) The selected student succeeded in the official exam.

Calculate the probability that this student is in the LS section.

Part B

There are 50 students in the third secondary classes in this school in 2017. A computer software selects randomly and simultaneously the names of three students from the 50 students.

	Е	G	L	Total
S	6	4		
S				20
Total	25	5	20	50

- 1) **Verify** that 30 students of this school succeeded in the official exam.
- 2) Let <u>X</u> be the random variable equal to <u>the number of students who succeeded in the official exam among the three selected names of the students.</u>
 - a- Calculate P(X = 1).
 - b- **Calculate** the probability of selecting at least one name of a student who succeeded in the official exam.

III- (4 points)

At the beginning of the year 2015, Nabil deposits a capital of 60 million LL in a bank, at an <u>annual interest rate of 6%</u>, compounded annually.

At the beginning of every year, <u>and after compounding the interest</u>, Nabil deposits an additional amount of 3 000 000 LL in the same account.

For all natural numbers n, denote by S_n the amount, in millions LL, that Nabil has in his account at the end of the year (2015 + n).

Thus, $S_0 = 60$ and $S_{n+1} = 1.06S_n + 3$ for all natural numbers n.

- 1) Calculate the amount of money in Nabil's account at the end of the year 2016.
- 2) Let (V_n) be the sequence defined as $V_n = S_n + 50$ for all natural numbers n.
 - a- **Show** that (V_n) is a geometric sequence whose common ratio and first term V_0 are to be determined.
 - b- **Show** that $S_n = 110 \times (1.06)^n 50$ for all natural numbers n.
 - c- **Show** that the sequence (S_n) is strictly increasing.
- 3) Calculate the amount of money in Nabil's account at the end of the year 2020.
- 4) Calculate n so that $S_n \ge 90$.

IV-(8 points)

Consider the function f defined over the interval $I = [1, +\infty[$ as $f(x) = (10x - 10) e^{-x}$ and denote by (C) its representative curve in an orthonormal system $(0; \vec{i}, \vec{j})$.

Part A

- 1) **Determine** $\lim_{x \to +\infty} f(x)$
 - **-deduce** an asymptote to (C).
- 2) -Show that $f'(x) = 10(-x+2)e^{-x}$
 - -set up the table of variations of f.
- 3) **Draw** (C).
- 4) The function F defined, over I, as $F(x) = -10xe^{-x}$ is an antiderivative of f. Calculate the area of the region bounded by the curve (C), the x-axis and the two lines with equations x = 2 and x = 4.

Part B

A company produces a certain type of objects.

The <u>demand function</u> f and the <u>supply function</u> g, defined over J = [2, 10], are respectively modeled as $f(x) = (10x - 10)e^{-x}$ and $g(x) = e^{x-4}$, where f(x) and g(x) are expressed in <u>thousands</u> of objects and the unit price x is expressed in <u>millions</u> of LL. (The unit price is the price of 1000 objects)

- 1) Calculate the number of demanded objects for a unit price of 3 000 000 LL.
- 2) **Find** the unit price for a supply of 1 000 objects.
- 3) The equation f(x) = g(x) has, over J, a unique solution α . Suppose that $\alpha = 3.635$.
 - a- Give an economical interpretation of α
 -calculate the corresponding number of objects.
 - b- Calculate, in LL, the revenue corresponding to the value of α given above.
- 4) Denote by E(x) the elasticity of the demand with respect to the unit price x.

a- **Show** that
$$E(x) = \frac{x^2 - 2x}{x - 1}$$
.

b- For an increase of 1% on the unit price x_0 in millions LL, the demand will decrease by 1.5%.

Calculate x_0 .