ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في اليا المسابقة).

مسابقة في مادة الرياضيات

المدة: ساعتان

باللفة الإنكليزية

I- (4 points)

A restaurant distributes brochures each month for advertisement.
The table below shows the number of distributed brochures (y_{i}) in thousands and the monthly cost of distribution $\left(\mathrm{x}_{\mathrm{i}}\right)$ in hundred thousands LL.

Cost of distribution $\left(\mathrm{x}_{\mathrm{i}}\right)$ in hundred thousands LL	1	3.5	2	5	1.5	2.4
Number of distributed brochures $\left(\mathrm{y}_{\mathrm{i}}\right)$ in thousands	1.2	6.4	2.6	7.2	2.1	3.2

1) Find the coordinates of the center of gravity $G(\bar{x}, \bar{y})$.
2) - Represent the scatter plot $\left(x_{i}, y_{i}\right)$ in a rectangular system

- Plot G.

3) -Write an equation of the regression line $\left(D_{y / x}\right)$
-draw this line in the preceding system.
4) Find the correlation coefficient r
interpret the value found.
5) The above model remains valid in the year 2018.

Month	January 2018	February 2018	March 2018	April 2018	May 2018	June 2018
Cost of distribution $\left(\mathrm{x}_{\mathrm{i}}\right)$ in hundred thousands LL	1	3.5	2	5	1.5	2.4
Number of distributed brochures $\left(\mathrm{y}_{\mathrm{i}}\right)$ in thousands	1.2	6.4	2.6	7.2	2.1	3.2

The restaurant manager receives an advertisement offer for the month of July 2018.
This offer indicates: "4000 distributed brochures for only $\mathbf{2 5 0} 000$ LL".
Justify that this offer is better than the model of the regression line $\left(D_{y / x}\right)$.

II- (4 points)

Part A

One student is randomly selected from the third secondary students of this school.
Consider the following events:
E: "The selected student is in the ES section",
G: "The selected student is in the GS section",
L: "The selected student is in the LS section",
S: "The selected student succeeded in the official exam".
Those students are distributed as follows:

	E	G	L	Total
S	12%	8%		60%
$\overline{\mathrm{~S}}$				
Total	50%	10%	40%	100%

1) a- Calculate the probabilities $P(E \cap S)$ and $P(G \cap S)$.
b- Prove that $\mathrm{P}(\mathrm{L} \cap \mathrm{S})=0.22$.
2) The selected student succeeded in the official exam.

Calculate the probability that this student is in the LS section.

Part B

There are 50 students in the third secondary classes in this school in 2017. A computer software selects randomly and simultaneously the names of three students from the 50 students.

	E	G	L	Total
S	6	4		
$\overline{\mathrm{~S}}$				20
Total	25	5	20	50

1) Verify that 30 students of this school succeeded in the official exam.
2) Let \underline{X} be the random variable equal to the number of students who succeeded in the official exam among the three selected names of the students.
a- Calculate $\mathrm{P}(\mathrm{X}=1)$.
b- Calculate the probability of selecting at least one name of a student who succeeded in the official exam.

III- (4 points)

At the beginning of the year 2015, Nabil deposits a capital of 60 million LL in a bank, at an annual interest rate of 6%, compounded annually.

At the beginning of every year, and after compounding the interest, Nabil deposits an additional amount of 3000000 LL in the same account.

For all natural numbers n, denote by S_{n} the amount, in millions LL, that Nabil has in his account at the end of the year $(2015+\mathrm{n})$.

Thus, $\mathrm{S}_{0}=60$ and $\mathrm{S}_{\mathrm{n}+1}=1.06 \mathrm{~S}_{\mathrm{n}}+3$ for all natural numbers n .

1) Calculate the amount of money in Nabil's account at the end of the year 2016.
2) Let $\left(\mathrm{V}_{\mathrm{n}}\right)$ be the sequence defined as $\mathrm{V}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n}}+50$ for all natural numbers n .
a- Show that $\left(V_{n}\right)$ is a geometric sequence whose common ratio and first term V_{0} are to be determined.
b- Show that $\mathrm{S}_{\mathrm{n}}=110 \times(1.06)^{\mathrm{n}}-50$ for all natural numbers n .
c- Show that the sequence $\left(\mathrm{S}_{\mathrm{n}}\right)$ is strictly increasing.
3) Calculate the amount of money in Nabil's account at the end of the year 2020.
4) Calculate n so that $S_{n} \geq 90$.

IV-(8 points)

Consider the function f defined over the interval $I=\left[1,+\infty\left[\right.\right.$ as $f(x)=(10 x-10) e^{-x}$ and denote by (C) its representative curve in an orthonormal system $(\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}})$.

Part A

1) Determine $\lim _{x \rightarrow+\infty} f(x)$ -deduce an asymptote to (C).
2) -Show that $f^{\prime}(x)=10(-x+2) e^{-x}$ -set up the table of variations of f.
3) Draw (C).
4) The function F defined, over I, as $F(x)=-10 x e^{-x}$ is an antiderivative of f. Calculate the area of the region bounded by the curve (C), the x -axis and the two lines with equations $\mathrm{x}=2$ and $\mathrm{x}=4$.

Part B

A company produces a certain type of objects.
The demand function f and the supply function g, defined over $J=[2,10]$, are respectively modeled as $f(x)=(10 x-10) e^{-x}$ and $g(x)=e^{x-4}$, where $f(x)$ and $g(x)$ are expressed in thousands of objects and the unit price x is expressed in millions of LL. (The unit price is the price of 1000 objects)

1) Calculate the number of demanded objects for a unit price of 3000000 LL .
2) Find the unit price for a supply of 1000 objects.
3) The equation $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ has, over J , a unique solution α.

Suppose that $\alpha=3.635$.
a- -Give an economical interpretation of α
-calculate the corresponding number of objects.
b- Calculate, in LL, the revenue corresponding to the value of α given above.
4) Denote by $\mathrm{E}(\mathrm{x})$ the elasticity of the demand with respect to the unit price x .
a- Show that $E(x)=\frac{x^{2}-2 x}{x-1}$.
b- For an increase of 1% on the unit price x_{0} in millions LL, the demand will decrease by 1.5%.

Calculate x_{0}.

