

ملاحظة: - يسمح باستعمـال آلة حاسبة غبر قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالنرتيب الذي يناسبه (دون الالنز ام بترتيب المسائل الواردة في المسابقة).

I- (4 points)

A restaurant distributes brochures each month for advertisement.
The table below shows the number of distributed brochures $\left(y_{i}\right)$ in thousands and the monthly cost of distribution $\left(\mathrm{x}_{\mathrm{i}}\right)$ in hundred thousands LL.

Month	January 2018	February 2018	March 2018	April 2018	May 2018	June 2018
Cost of distribution $\left(\mathrm{x}_{\mathrm{i}}\right)$ in hundred thousands LL	1	3.5	2	5	1.5	2.4
Number of distributed brochures $\left(\mathrm{y}_{\mathrm{i}}\right)$ in thousands	1.2	6.4	2.6	7.2	2.1	3.2

1) Find the coordinates of the center of gravity $G(\bar{x}, \bar{y})$.
2) Represent the scatter plot $\left(x_{i}, y_{i}\right)$ in a rectangular system and plot G.
3) Write an equation of the regression line $\left(D_{y / x}\right)$ and draw this line in the preceding system.
4) Find the correlation coefficient r and interpret its value.
5) The above model remains valid in the year 2018.

The restaurant manager receives an advertisement offer for the month of July 2018.
The offer indicates: " 4000 distributed brochures for only 250000 LL ".
Is it more advantageous for the manager to take this offer or to remain using the given model?
Justify.

II- (4 points)

In 2017, the students of the third secondary classes of a certain school are distributed as follows:

- 50% of the students are in the ES section of which 60% succeeded in the official exam.
- 10% of the students are in the GS section of which 80% succeeded in the official exam.
- 40% of the students are in the LS section.
- 60% of the students succeeded in the official exam.

Part A

One student is randomly selected from the third secondary students of this school.
Consider the following events:
E: "The selected student is in the ES section", G: "The selected student is in the GS section",
L: "The selected student is in the LS section", S: "The selected student succeeded in the official exam".

1) a- Calculate the probabilities $P(E \cap S)$ and $P(G \cap S)$.
b- Prove that $\mathrm{P}(\mathrm{L} \cap \mathrm{S})=0.22$.
2) The selected student succeeded in the official exam. Calculate the probability that this student is in the LS section.

Part B

There are 50 students in the third secondary classes in this school in 2017. A computer software selects randomly and simultaneously the names of three students from the 50 students.

1) Verify that 30 students of this school succeeded in the official exam.
2) Let X be the random variable equal to the number of students who succeeded in the official exam among the three selected names of the students.
a- Calculate $\mathrm{P}(\mathrm{X}=1)$.
b- Calculate the probability of selecting at least one name of a student who succeeded in the official exam.

III- (4 points)

At the beginning of the year 2015, Nabil deposits a capital of 60 million LL in a bank, at an annual interest rate of 6%, compounded annually.
At the beginning of every year, and after compounding the interest, Nabil deposits an additional amount of 3000000 LL in the same account.
For all natural numbers n, denote by S_{n} the amount, in millions LL, that Nabil has in his account at the end of the year $(2015+n)$.
Thus, $\mathrm{S}_{0}=60$ and $\mathrm{S}_{\mathrm{n}+1}=1.06 \mathrm{~S}_{\mathrm{n}}+3$ for all natural numbers n .

1) Calculate the amount of money in Nabil's account at the end of the year 2016.
2) Let $\left(V_{n}\right)$ be the sequence defined as $V_{n}=S_{n}+50$ for all natural numbers n.
a- Show that $\left(\mathrm{V}_{\mathrm{n}}\right)$ is a geometric sequence whose common ratio and first term V_{0} are to be determined.
b- Show that $S_{n}=110 \times(1.06)^{n}-50$ for all natural numbers n.
c- Show that the sequence $\left(\mathrm{S}_{\mathrm{n}}\right)$ is strictly increasing.
3) Calculate the amount of money in Nabil's account at the end of the year 2020.
4) Nabil wants to buy a piece of land that costs 90 million LL.

In which year would Nabil be able, for the first time, to buy this piece of land? Justify.

IV-(8 points)

Consider the function f defined over the interval $\mathrm{I}=\left[1,+\infty\left[\right.\right.$ as $\mathrm{f}(\mathrm{x})=(10 \mathrm{x}-10) \mathrm{e}^{-\mathrm{x}}$ and denote by (C) its representative curve in an orthonormal system $(\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}})$.

Part A

1) Determine $\lim _{x \rightarrow+\infty} f(x)$ and deduce an asymptote to (C).
2) Show that $f^{\prime}(x)=10(-x+2) e^{-x}$ and set up the table of variations of f.
3) Draw (C).
4) The function F defined, over I, as $F(x)=-10 x e^{-x}$ is an antiderivative of f. Calculate the area of the region bounded by the curve (C), the x-axis and the two lines with equations $x=2$ and $x=4$.

Part B

A company produces a certain type of objects.
The demand function f and the supply function g, defined over $J=[2,10]$, are respectively modeled as $f(x)=(10 x-10) e^{-x}$ and $g(x)=e^{x-4}$, where $f(x)$ and $g(x)$ are expressed in thousands of objects and the unit price x is expressed in millions of LL. (The unit price is the price of 1000 objects)

1) Calculate the number of demanded objects for a unit price of 3000000 LL .
2) Find the unit price for a supply of 1000 objects.
3) The equation $f(x)=g(x)$ has, over J, a unique solution α.

Suppose that $\alpha=3.635$.
a- Give an economical interpretation of α and calculate the corresponding number of objects.
b- Calculate, in LL, the revenue corresponding to the value of α given above.
4) Denote by $\mathrm{E}(\mathrm{x})$ the elasticity of the demand with respect to the unit price x .
a- Show that $E(x)=\frac{x^{2}-2 x}{x-1}$.
b- For an increase of 1% on the unit price x_{0} in millions LL, the demand will decrease by 1.5%. Calculate x_{0}.

Q.I	Answers	4 pts
1	$\mathrm{G}(2.566 ; 3.783)$	1
2		1.5
3	$\mathrm{y}=1.618 \mathrm{x}-0.369$	1.5
4	$\mathrm{r}=0.971$ strong positive linear correlation.	1
5	$x=2.5$ then $y=3.676$ (thousands of brochures) 3676 brochures <4000 brochures. The offer is more advantageous for the manager Or $y=4$ then $x=2.70024$ (in hundred thousands) but 270024 LL > 250000 LL, then the offer is more advantageous for the manager	2
Q.II	Answers	4 pts
A.1.a	$\begin{aligned} & \mathrm{P}(\mathrm{E} \cap \mathrm{~S})=0.5 \times 0.6=0.3 \\ & \mathrm{P}(\mathrm{G} \cap \mathrm{~S})=0.1 \times 0.8=0.08 \end{aligned}$	2
A.1.b	$\mathrm{P}(\mathrm{L} \cap \mathrm{S})=\mathrm{P}(\mathrm{S})-\mathrm{P}(\mathrm{E} \cap \mathrm{S})-\mathrm{P}(\mathrm{G} \cap \mathrm{S})=0.6-0.3-0.08=0.22$	1.5
A. 2	$\mathrm{P}(\mathrm{L} / \mathrm{S})=\frac{\mathrm{P}(\mathrm{L} \cap \mathrm{S})}{\mathrm{P}(\mathrm{S})}=\frac{0.22}{0.6}=\frac{11}{30}=0.366$	1
B. 1	$50 \times 0.6=30$	0.5
B.2.a	$\mathrm{P}(\mathrm{X}=1)=\frac{\mathrm{C}_{30}^{1} \times \mathrm{C}_{20}^{2}}{\mathrm{C}_{50}^{3}}=\frac{57}{196}=0.2908$	1
B.2.b	$\mathrm{P}=1-\mathrm{P}(\mathrm{X}=0)=1-\frac{\mathrm{C}_{20}^{3}}{\mathrm{C}_{50}^{3}}=\frac{923}{980}=0.9418$	1

Q.III	Answers	4 pts
1	$\mathrm{S}_{1}=1.06 \mathrm{~S}_{0}+3=1.06(60)+3=66.6 \text {. }$ The amount of money in Nabil's account at the end of the year 2016 was 66600000 LL.	1
2.9	$\begin{aligned} & \mathrm{V}_{\mathrm{n}+1}=\mathrm{S}_{\mathrm{n}+1}+50=1.06 \mathrm{~S}_{\mathrm{n}}+53 \\ & \frac{\mathrm{~V}_{\mathrm{n}+1}}{\mathrm{~V}_{\mathrm{n}}}=\frac{1.06 \mathrm{~S}_{\mathrm{n}}+53}{\mathrm{~S}_{\mathrm{n}}+50}=\frac{1.06\left(\mathrm{~S}_{\mathrm{n}}+50\right)}{\mathrm{S}_{\mathrm{n}}+50}=1.06 \end{aligned}$ Then $\left(\mathrm{V}_{\mathrm{n}}\right)$ is a geometric sequence of common ratio is 1.06 and first term $\mathrm{V}_{0}=110$.	1.5
2.b	$\mathrm{V}_{\mathrm{n}}=110(1.06)^{\mathrm{n}}$ then $\mathrm{S}_{\mathrm{n}}=\mathrm{V}_{\mathrm{n}}-50=110 \times(1.06)^{\mathrm{n}}-50$	1.5
$2 . \mathrm{c}$	$S_{n+1}-S_{n}=110 \times(1.06)^{n+1}-110 \times(1.06)^{n}=110(1.06)^{n}(0.06)>0 .$ Then the sequence $\left(\mathrm{S}_{\mathrm{n}}\right)$ is strictly increasing.	1
3	$\mathrm{S}_{5}=110 \times(1.06)^{5}-50=97.204813$ The amount of money in Nabil's account at the end of the year 2020 will be 97204 813LL.	1
4	$\mathrm{S}_{\mathrm{n}}>90 \text { then } 110 \times(1.06)^{\mathrm{n}}-50>90 \text { then } 110 \times(1.06)^{\mathrm{n}}>140 \text { then }(1.06)^{\mathrm{n}}>\frac{14}{11}$ then $n>4.1$ so $n=5$ then Nabil will be able, for the first time, to buy this piece of land in 2020 OR $\mathrm{S}_{4}=88.8724<90<\mathrm{S}_{5}$ and $\left(\mathrm{S}_{\mathrm{n}}\right)$ is strictly increasing so $\mathrm{n}=5$ then Nabil will be able, for the first time, to buy this piece of land in 2020	1
Q.IV	Answers	8 pts
A. 1	$\begin{aligned} & \lim _{\mathrm{x} \rightarrow+\infty} \mathrm{f}(\mathrm{x})=\lim _{\mathrm{x} \rightarrow+\infty}(10 \mathrm{x}-10) \mathrm{e}^{-\mathrm{x}}=\lim _{\mathrm{x} \rightarrow+\infty}\left(10 \mathrm{xe}^{-\mathrm{x}}-10 \mathrm{e}^{-\mathrm{x}}\right)=0 . \\ & \text { Then } \mathrm{x}^{\prime} \mathrm{x} \text { is a horizontal asymptote to }(\mathrm{C}) \text { at }+\infty . \end{aligned}$	2
A. 2	$\mathrm{f}^{\prime}(\mathrm{x})=10(-\mathrm{x}+2) \mathrm{e}^{-\mathrm{x}}$	2.5
A. 3		1.5
A. 4	Area $=\int_{2}^{4} \mathrm{f}(\mathrm{x}) \mathrm{dx}=[\mathrm{F}(\mathrm{x})]_{2}^{4}=-10\left(4 \mathrm{e}^{-4}-2 \mathrm{e}^{-2}\right)=1.97$ (unit) ${ }^{2}$.	1
B. 1	$\mathrm{x}=3, \mathrm{f}(3)=0.995$ then 995 objects.	1
B. 2	$\mathrm{g}(\mathrm{x})=1 ; \mathrm{e}^{\mathrm{x}-4}=1$ then $\mathrm{x}=4$ hence 4000000 LL.	1
B.3.a	α is the equilibrium price in million LL then 3635000 LL. $f(\alpha)=f(3.635)=0.695$ then 695 objects.	2
B.3.b	$\mathrm{R}(\alpha)=\alpha \mathrm{f}(\alpha)=2,526325$ in million LL then 2526325 LL.	1
B.4.a	$E(x)=-x \frac{f(x)}{f(x)}=\frac{x^{2}-2 x}{x-1}$	1
B.4.b	$\mathrm{E}(\mathrm{x})=1.5$ then $\mathrm{x}^{2}-2 \mathrm{x}=1.5(\mathrm{x}-1)$ then $\mathrm{x}^{2}-3.5 \mathrm{x}+1.5=0$ so $\mathrm{x}=3$ acc or $x=0.5<2$ rejected.	1

