							_
الأسم:		مسابقة في مادة الرياضيات				عدد المسائل: اربع	
الرقم:		المدة: ساعتان				C	
	- 1 - 1 - <u>1</u>	1	** * * * *	. * 1	etî te e	1 740 51	7

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (4 points)

A restaurant distributes brochures each month for advertisement.

The table below shows the number of distributed brochures (y_i) in thousands and the monthly cost of distribution (x_i) in hundred thousands LL.

Month	January 2018	February 2018	March 2018	April 2018	May 2018	June 2018
Cost of distribution (x _i) in hundred thousands LL	1	3.5	2	5	1.5	2.4
Number of distributed brochures (y _i) in thousands	1.2	6.4	2.6	7.2	2.1	3.2

1) Find the coordinates of the center of gravity $G(\bar{x}, \bar{y})$.

2) Represent the scatter plot (x_i, y_i) in a rectangular system and plot G.

3) Write an equation of the regression line $(D_{y/x})$ and draw this line in the preceding system.

- 4) Find the correlation coefficient r and interpret its value.
- 5) The above model remains valid in the year 2018.

The restaurant manager receives an advertisement offer for the month of July 2018.

The offer indicates: "4 000 distributed brochures for only 250 000 LL".

Is it more advantageous for the manager to take this offer or to remain using the given model? Justify.

II- (4 points)

In 2017, the students of the third secondary classes of a certain school are distributed as follows:

- 50% of the students are in the ES section of which 60% succeeded in the official exam.
- 10% of the students are in the GS section of which 80% succeeded in the official exam.
- 40% of the students are in the LS section.
- 60% of the students succeeded in the official exam.

Part A

One student is randomly selected from the third secondary students of this school.

Consider the following events:

E: "The selected student is in the ES section", G: "The selected student is in the GS section",

L: "The selected student is in the LS section", S: "The selected student succeeded in the official exam".

- 1) a- Calculate the probabilities $P(E \cap S)$ and $P(G \cap S)$.
 - b- Prove that $P(L \cap S) = 0.22$.
- 2) The selected student succeeded in the official exam. Calculate the probability that this student is in the LS section.

Part B

There are 50 students in the third secondary classes in this school in 2017. A computer software selects randomly and simultaneously the names of three students from the 50 students.

- 1) Verify that 30 students of this school succeeded in the official exam.
- 2) Let X be the random variable equal to the number of students who succeeded in the official exam among the three selected names of the students.
 - a- Calculate P(X = 1).
 - b- Calculate the probability of selecting at least one name of a student who succeeded in the official exam.

III- (4 points)

At the beginning of the year 2015, Nabil deposits a capital of 60 million LL in a bank, at an annual interest rate of 6%, compounded annually.

At the beginning of every year, and after compounding the interest, Nabil deposits an additional amount of 3 000 000 LL in the same account.

For all natural numbers n, denote by S_n the amount, in millions LL, that Nabil has in his account at the end of the year (2015 + n).

Thus, $S_0 = 60$ and $S_{n+1} = 1.06S_n + 3$ for all natural numbers n.

- 1) Calculate the amount of money in Nabil's account at the end of the year 2016.
- 2) Let (V_n) be the sequence defined as $V_n = S_n + 50$ for all natural numbers n.
 - a- Show that (V_n) is a geometric sequence whose common ratio and first term V_0 are to be determined.
 - b- Show that $S_n = 110 \times (1.06)^n 50$ for all natural numbers n.
 - c- Show that the sequence (S_n) is strictly increasing.
- 3) Calculate the amount of money in Nabil's account at the end of the year 2020.
- 4) Nabil wants to buy a piece of land that costs 90 million LL.In which year would Nabil be able, for the first time, to buy this piece of land? Justify.

IV-(8 points)

Consider the function f defined over the interval I = $[1, +\infty)$ as $f(x) = (10x - 10)e^{-x}$ and denote by (C) its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$.

Part A

- 1) Determine $\lim f(x)$ and deduce an asymptote to (C).
- 2) Show that $f'(x) = 10(-x+2)e^{-x}$ and set up the table of variations of f.
- 3) Draw (C).
- 4) The function F defined, over I, as $F(x) = -10 x e^{-x}$ is an antiderivative of f. Calculate the area of the region bounded by the curve (C), the x-axis and the two lines with equations x = 2 and x = 4.

Part B

A company produces a certain type of objects.

The demand function f and the supply function g, defined over J = [2, 10], are respectively modeled as $f(x) = (10x - 10) e^{-x}$ and $g(x) = e^{x-4}$, where f(x) and g(x) are expressed in thousands of objects and the unit price x is expressed in millions of LL. (*The unit price is the price of 1000 objects*)

- 1) Calculate the number of demanded objects for a unit price of 3 000 000 LL.
- 2) Find the unit price for a supply of 1 000 objects.
- 3) The equation f(x) = g(x) has, over J, a unique solution α . Suppose that $\alpha = 3.635$.
 - a-Give an economical interpretation of α and calculate the corresponding number of objects.
 - b- Calculate, in LL, the revenue corresponding to the value of α given above.
- 4) Denote by E(x) the elasticity of the demand with respect to the unit price x.

a- Show that
$$E(x) = \frac{x^2 - 2x}{x - 1}$$
.

b- For an increase of 1% on the unit price x_0 in millions LL, the demand will decrease by 1.5%. Calculate x_0 .

دورة المعام ٢٠١٨ العاديّة الإثنين ١١ حزيران ٢٠١٧ امتحانات الشهادة الثانوية العامة فرع: الاجتماع والاقتصاد وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسمية

أسس تصحيح مسابقة الرياضيات

Q.I	Answers	4 pts
1	G(2.566; 3.783)	1
	y 8- (D _{y/x})	
2	G G	1.5
	4	
3	y = 1.618x - 0.369	1.5
4	r = 0.971 strong positive linear correlation.	1
5	x = 2.5 then $y = 3.676$ (thousands of brochures) 3 676 brochures<4 000 brochures. The offer is more advantageous for the manager Or $y = 4$ then $x = 2.70024$ (in hundred thousands) but 270 024 LL > 250 000 LL, then the offer is more advantageous for the manager	2
Q.II	Answers	4 pts
	$E \xrightarrow{0.6} S$ $0.5 \xrightarrow{0.4} L \xrightarrow{S}$ $0.1 \xrightarrow{G} 0.8 \xrightarrow{S}$	
A.1.a	$P(E \cap S) = 0.5 \times 0.6 = 0.3$ $P(G \cap S) = 0.1 \times 0.8 = 0.08$ $P(L \cap S) = P(S) - P(E \cap S) - P(C \cap S) = 0.6 - 0.3 - 0.08 = 0.22$	2
A.1.0	$P(L/S) = \frac{P(L\cap S)}{P(L \cap S)} = \frac{0.22}{10} = \frac{11}{10} = 0.366$	1.3
B.1	$\frac{P(S)}{50 \times 0.6 = 30} = 0.6 - 30$	0.5
B.2.a	$P(X=1) = \frac{C_{30}^1 \times C_{20}^2}{C_{50}^3} = \frac{57}{196} = 0.2908$	1
B.2.b	$P = 1 - P(X = 0) = 1 - \frac{C_{20}^3}{C_{50}^3} = \frac{923}{980} = 0.9418$	1

Q.III	Answers	4 pts			
1	$S_1 = 1.06S_0 + 3 = 1.06(60) + 3 = 66.6.$ The amount of money in Nabil's account at the end of the year 2016 was 66 600 000 LL				
2.a	$\frac{V_{n+1} = S_{n+1} + 50 = 1.06S_n + 53}{V_n} = \frac{1.06S_n + 53}{S_n + 50} = \frac{1.06(S_n + 50)}{S_n + 50} = 1.06$ Then (V _n) is a geometric sequence of common ratio is 1.06 and first term V ₀ = 110.	1.5			
2.b	$V_n = 110(1.06)^n$ then $S_n = V_n - 50 = 110 \times (1.06)^n - 50$	1.5			
2.c	$\frac{S_{n+1} - S_n = 110 \times (1.06)^{n+1} - 110 \times (1.06)^n = 110(1.06)^n (0.06) > 0.}{\text{Then the sequence } (S_n) \text{ is strictly increasing.}}$				
3	$S_5 = 110 \times (1.06)^5 - 50 = 97.204813$ The amount of money in Nabil's account at the end of the year 2020 will be 97 204 813LL.				
4	$S_n > 90 \text{ then } 110 \times (1.06)^n - 50 > 90 \text{ then } 110 \times (1.06)^n > 140 \text{ then } (1.06)^n > \frac{14}{11}$ then n > 4.1 so n = 5 then Nabil will be able, for the first time, to buy this piece of land in 2020 OR $S_4 = 88.8724 < 90 < S_5 \text{ and } (S_n) \text{ is strictly increasing so } n = 5 \text{ then Nabil will be able, for the first time, to buy this piece of land in 2020}$				
Q.IV	Answers	8 pts			
A.1	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (10x - 10)e^{-x} = \lim_{x \to +\infty} (10xe^{-x} - 10e^{-x}) = 0.$ Then x'x is a horizontal asymptote to (C) at $+\infty$.	2			
A.2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.5			
A.3	y 1.35 1 0 1 2 3 4 5 6 X	1.5			
A.4	Area = $\int_{2}^{4} f(x) dx = [F(x)]_{2}^{4} = -10(4e^{-4} - 2e^{-2}) = 1.97 \text{ (unit)}^{2}$.				
B.1	x = 3, $f(3) = 0.995$ then 995 objects.				
B.2	$g(x) = 1$; $e^{x-4} = 1$ then $x = 4$ hence 4 000 000 LL.				
B.3. a	α is the equilibrium price in million LL then 3 635 000 LL. $f(\alpha) = f(3.635) = 0.695$ then 695 objects.				
B.3. b	$R(\alpha) = \alpha f(\alpha) = 2,526325$ in million LL then 2 526 325 LL.	1			
B.4. a	$E(x) = -x \frac{f'(x)}{f(x)} = \frac{x^2 - 2x}{x - 1}$	1			
B.4.b	$E(x) = 1.5 \text{ then } x^2 - 2x = 1.5(x - 1) \text{ then } x^2 - 3.5x + 1.5 = 0 \text{ so } x = 3 \text{ acc}$ or $x = 0.5 < 2$ rejected.	1			