ة المتوسطة	الشهادة	امتحانات
------------	---------	----------

دورة العام ۲۰۱۸ العادية الاثنين ٤ حزيران ٢٠١٨ للمكفه فين وزارة التربية والتعليم العالي المديريّـة العامة للتربية دائرة الامتحانات الرسمية

مسابقة في مادة الفيزياء الاسم: المدة: ساعة و احدة الدقون	J	
المدة: ساعة واحدة الرقم:		

تتألف هذه المسابقة من أربعة تمارين، موزّعة على صفحتين. يسمح باستعمال الله حاسبة غير مبرمجة.

التمرين الاول: (4 علامات) توازن جسم

علقنا نابضاً (R)، صلادته N/m = 20 N/m، بطرفه الأعلى بدعامة ثابتة. بطرف النابض السفلي علقنا جسماً (S)، كتلته m. هذا الجسم هو بحالة اتزان تحت تأثير قوتين هما: وزنه (\overrightarrow{W}) وقيمته W و توتر النابض (\overrightarrow{T}) قيمته T = 1.5 كما هو مبين بالمستند رقم 1.

. g = 10 N / kg :معطیات

الجمل الآتية خاطئة، أعد كتابتها بصيغة صحيحة:

- استطالة النابض بحالة الاتزان هي x=6 cm.
 - ا. \overrightarrow{W} هي قوة تماس و $\overrightarrow{\mathrm{T}}$ هي قوة تاثير عن بعد .
- \overrightarrow{W} . بما أن الجسم (S) بحالة إنزان، فإن العلاقة بين \overrightarrow{W} و \overrightarrow{T} هي: $\overrightarrow{W}=\overrightarrow{W}$.
 - m = 2 kg هي (S) عتلة الجسم عتلة الجسم (S) عتلة الجسم عتلة الجسم (S) عتلة الجسم (S) عتلة الحسم (S)

التمرين الثاني: (5 علامات) طبيعة سائل

الهدف من هذا التمرين هو تحديد نوع سائل (L) ، لذلك واستعملنا جسما (S)، له حجم 5

- الجسم (S) هو بحالة اتزان في الهواء كما هو موضح بالمستند رقم ٢.
 يشير الميزان الزنبركي الى قيمة N (3.9 ماذا تعنى هذه القيمة؟
- نوم عندما غطس الجسم (C) كليا في السائل (L) ذو كثافة ρ ،كما يشير المستند Γ ، فان الميزان الزنبركي قد أشار الى قيمة (C) عندما غطس الجسم 3.5 N
 - ٢,١ ماذا تعنى هذه القيمة؟
 - ٢,٢ أعط اسم القوة التي يؤثر بها السائل (L) على الجسم (S).
 - ٢,٣ احسب قيمة هذه القوة.
 - ρ استنتج قيمة كثافة السائل ρ
 - ٠,٥ استنادا الى الجدول أدناه أستنتج نوع السائل (L).

ماء	أسيتون	زيت زيتون	زيت نباتي	كحول	السائل
1000	792	918	910	800	(kg/m³) الكثافة

دارة كهربائية متصلة على التوالي وتحتوى العناصر التالية:

- مولد کهربائي (G) يعطي على طرفيه توتر ثابت $U_G=12V$.
 - محرك (M)
 - مصباح كهربائي (L) مكتوب عليه 10W
 - مفتاح کهربائي(K)

1 ما هي قيمة التوتر حول طرفي المفتاح الكهربائي المغلق؟

- ٢. التوتر حول طرفي المصباح الكهربائي هو $U_L=4V$ اوجد ، مع تحديد القانون المستخدم، قيمة التوتر U_M حول طرفي المحرك M.
 - I=1A هل يعمل المصباح الكهربائي بشكل طبيعي؛ لماذا؟ I=1A
 - ٤. الان تم فتح الدارة الكهربائية. ماهي قيمة التوتر الكهربائي حول طرفي المفتاح الكهربائي المفتوح K؟ برر اجبتك.
 - ٥. اعط بهذه الحالة قيمة التوتر الكهربائي على طرفي المولد الكهربائي (G).
 - ٦. اعط قيمة شدة التيار الكهربائي الاساسي في هذة الدارة.

التمرين الرابع: (٥ علامات) دارة كهربائية منزلية

نتغذى دارة كهربائية منزلية بتيار كهربائي متناوب جيبي ذو قيمة فعالة للجهد تساوي V 220.و تحتوي هذه الدارة على الاجهزة الكهربائية التالية المتصلة على التوازي:

- فرن كهربائي W 2000.
- مكواة كهربائية W 1000.
- مدفئة كهر بائية W 1070.
- مصباحان کهربائیان متماثلان یعملان علی انهما مقاومتان أومیتان بمقاومة $R=\Omega^{-1}$ منهما منهما
 - 1. اثبت ان الطاقة المستهلكة بكل مصباح هي 55W.
 - اوجد بـ KWh ، الطاقة الكهربائية المستهلكة لكل مصباح عندما يضيئ طبيعيا لفترة ٢٠ ساعة.
 - ٣. تعمل جميع الاجهزة الكهربائية طبيعيا بنفس الوقت.
 - ٣,١ احسب القدرة الكهربائية الكلية التي تستهلكها جميع الاجهزة.
 - ٣,٢ استنتج الشدة (I) للتيار الكهربائي الاساسي.
- 7 اختر، من خلال القواطع الكهربائية التي تحمل القيم التالية 1 1 1 1 2 3 القاطع الكهربائي المناسب مبررا اجابتك