دورة الـعام 2017 الاستثـائيّة الاثثين في 7 آب 2017			وزارة التربية والتعليم العالبي المديريـة العامـة للتربـة
			دائرة الامتحانـات الرسميّة
الرقم: الاسم:		مسابقة في مـادة الفيزيـاء	
		المدة: ساعتان	

This exam is formed of three obligatory exercises in 3 pages. The use of non-programmable calculator is recommended

Exercise 1 (6.5 points)

Determination of the capacitance of a capacitor

The aim of this exercise is to determine the capacitance C of a capacitor. For this aim, consider the electric circuit shown in document 1 . The circuit includes a resistor of resistance R, a coil of inductance L and of negligible resistance r, a capacitor of capacitance C, and a low frequency generator (LFG) delivering alternating sinusoidal voltage:

$$
u_{\mathrm{g}}=\mathrm{u}_{\mathrm{AD}}=\mathrm{U}_{\mathrm{m}} \cos (\omega \mathrm{t}) \quad(\mathrm{u} \text { in } \mathrm{V} ; \mathrm{t} \text { in } \mathrm{s}) .
$$

An oscilloscope is connected so as to visualize, as a function of time, the variation of the voltage $u_{A D}$ across the generator on channel Y_{1} and the voltage $u_{B D}=u_{\text {coil }}$ across the coil on channel Y2 (Document 2).
The vertical sensitivity of channel 1 is: $\mathrm{Sv}_{1}=5 \mathrm{~V} /$ div.
The vertical sensitivity of channel 2 is: $\mathrm{Sv}_{2}=2 \mathrm{~V} /$ div.

1) Redraw the circuit of document 1 showing on it the connections of the oscilloscope.
2) Using the waveforms of document 2, determine:

2-1) the amplitudes U_{m} and $U_{m(c o i l)}$ of the voltages u_{g} and $u_{\text {coil }}$.
2-2) the phase difference between the two voltages.
3) Write the expression of the voltage $u_{\text {coil }}$ across the coil as function of time t and the angular frequency ω.
4) The expression of the current i in the circuit is: $\mathrm{i}=\frac{9.375 \pi}{\omega} \cos (\omega \mathrm{t}) \quad(\mathrm{i}$ in $\mathrm{A} ; \mathrm{t}$ in s$)$.
Determine the expression of the voltage $u_{\text {coil }}$ across the terminals of the coil in terms of L, ω and t .
5) Using the results of part 3 and 4 , show that $L=0.204 \mathrm{H}$.
6) Indicate the value of the phase difference between u_{g} and i.
7) A phenomenon takes place in the circuit. Name this phenomenon.
8) Deduce the value of C knowing that the angular frequency
 $\omega=300 \pi \mathrm{rad} / \mathrm{s}$.

Exercise 2 (6.5 points)

Ionization and fission of uranium

The aim of this exercise is to study the ionization and the fission of a uranium isotope.
Given:
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$; speed of light in vacuum: $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$; Planck's constant: $\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J} . \mathrm{s}$. Mass of ${ }_{92}^{235} \mathrm{U}$ nucleus $=234.99342 \mathrm{u} ; 1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}$.

1- Ionizing one of the uranium isotopes

A monochromatic radiation of frequency
$v=8 \times 10^{14} \mathrm{~Hz}$ illuminates a sample of uranium containing the isotopes ${ }_{92}^{235} \mathrm{U}$ and ${ }_{92}^{238} \mathrm{U}$.
1-1) Calculate, in Joules and in eV, the energy of a photon of the incident radiation.
1-2) Document 1 shows some of the energy levels of the isotopes ${ }_{92}^{235} \mathrm{U}$ and ${ }_{92}^{238} \mathrm{U}$. The photons of the incident radiation can excite one of these isotopes of uranium
 from energy level E_{1} to energy level E_{2}.
Specify which of the two isotopes will be excited.
1-3) Before it de-excites, the excited isotope receives another photon of same frequency v.
1-3-1) Show that this isotope will be ionized.
1-3-2) Determine the maximum kinetic energy $\mathrm{KE}_{\max }$ of the liberated electron.
1-4) This experiment shows evidence of one of the two aspects of light. Name this aspect.

2- Nuclear reaction

The isotope of uranium which undergoes fission in the nuclear power plant is uranium-235.
One of the fission reactions of uranium- 235 nucleus is given by:

$$
{ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{36}^{90} \mathrm{Kr}+{ }_{56}^{\mathrm{X}} \mathrm{Ba}+8{ }_{0}^{1} \mathrm{n}+\gamma
$$

2-1) This reaction is provoked. Why?
2-2) What condition must the projectile satisfy in order to realize this reaction?
2-3) Use one of the conservation laws to calculate x.
2-4) The energy liberated by the fission of each nucleus of uranium- 235 is about 200 MeV . In what forms does this energy appear?
2-5) A nuclear power plant of efficiency 40% furnishes an electric power 600 MW .
Determine, in kg, the mass of uranium- 235 consumed in 1 day in this power plant.

Exercise 3 (7 points)

Determination of the mass of a block and the stiffness of a spring

Consider two blocks, (A) of unknown mass m_{A} and (B) of mass $m_{B}=0.8 \mathrm{~kg}$, and a spring (R) of negligible mass and of stiffness k. The aim of this exercise is to determine m_{A} and k. Neglect all the forces of friction and take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
1- First experiment: Determination of m_{A}
The spring is placed on a horizontal track. The spring is compressed between (A) and (B) by means of a light string (Document 1).

The center of mass of (A) and that of (B) belong to the same horizontal plane which is taken as a reference level for gravitational potential energy.
The x -axis extends positively to the right.
We burn the string, (A) and (B) are ejected in opposite directions.

1-1) Name the external forces acting on the system [(A), (B) and (R)].
1-2) Deduce that the linear momentum of the system $[(A),(B)$ and $(R)]$ is conserved during the motion of (A) and (B) on the horizontal track.
1-3) The velocity of the center of mass of block (B) just after ejection is $\vec{V}_{B}=0.75 \vec{\imath}(\mathrm{~m} / \mathrm{s})$.
1-3-1) Determine the linear momentum $\overrightarrow{\mathrm{P}}_{\mathrm{A}}$ of block (A).
1-3-2) Deduce in terms of m_{A} the velocity \vec{V}_{A} of the center of mass of (A) just after ejection.
1-4) Block (A) continues its motion and reaches a curvilinear path CD situated in the vertical plane (Document 1). The maximum height attained by the center of mass of (A) above the reference level is $h_{\text {max }}=5 \mathrm{~cm}$.
1-4-1) Apply the principle of conservation of mechanical energy to the system [(A), Earth] to determine the magnitude V_{A} of \vec{V}_{A}.
1-4-2) Deduce the value of the mass m_{A}.

2- Second experiment: Determination of k

We fix block (B) to one of the ends of the spring (R), the other end of the spring is attached to a fixed support (Document 2).
At equilibrium, (B) is at O taken as an origin of abscissa of the axis
 x'x.
(B) is displaced, from point O along the axis $\mathrm{x}^{\prime} \mathrm{x}$ by a distance X_{m} in the negative direction, and then it is released without initial velocity at the instant $t_{0}=0$. At an instant t, the abscissa of the center of mass G of (B) is x and the algebraic measure of its velocity is v .
During the motion of (B) between $t_{0}=0$ and $t=\frac{T_{0}}{2}\left[T_{0}\right.$ is the proper period of the oscillations of (B)], an appropriate system traces the graphs of documents (3) and (4).

Document (3): represents the variation of the speed of G as a function of time.
Document (4): represents the variation of the speed of G as a function of the abscissa x.
2-1) Determine, by referring to document (3), the value of the maximum kinetic energy of (B).
2-2) Deduce the value of the maximum elastic potential energy of the system [(R), (B), Earth].

2-3) Indicate, by referring to document (4), the value of X_{m}.
2-4) Deduce the value of k.

Exercise 2: Ionization and fission of uranium

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Answer \& mark

\hline \multirow[t]{5}{*}{Qus

1} \& 1 \& $$
\begin{aligned}
& \mathrm{E}=\mathrm{h} \nu \\
& \mathrm{E}=6.6 \times 10^{-34} \times 8 \times 10^{14}=5.28 \times 10^{-19} \mathrm{~J} \\
& \mathrm{E}=3.3 \mathrm{eV}
\end{aligned}
$$ \& \[

$$
\begin{gathered}
0.25 \\
0.5 \\
0.25 \\
\hline
\end{gathered}
$$
\]

\hline \& 2 \& $$
\begin{aligned}
& \mathrm{E}=3,3 \mathrm{eV}=\mathrm{E}_{2}-\mathrm{E}_{1} \text { for }{ }_{92}^{235} \mathrm{U} \\
& { }_{92}^{35} \mathrm{U} \text { can be excited }
\end{aligned}
$$ \& \[

$$
\begin{gathered}
0.5 \\
0.25
\end{gathered}
$$
\]

\hline \& 1 \& $$
\begin{aligned}
& \mathrm{E}_{\text {ionisation }}=\mathrm{E}_{\infty}-\mathrm{E}_{2}=2,9 \mathrm{eV} \\
& \mathrm{E}_{\text {photon }}>2.9 \mathrm{eV} \text {, the isotope can be ionized }
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\hline 0.25 \\
0.5 \\
\hline
\end{gathered}
$$
\]

\hline \& 3 \& $$
\begin{aligned}
& \mathrm{E}_{\text {photon }}=\left(\mathrm{E}_{\infty}-\mathrm{E}_{2}\right)+\mathrm{K} . \mathrm{E}_{\max }=\mathrm{E}_{\text {ionisation }}+\mathrm{K} . \mathrm{E}_{\max } \\
& \mathrm{K} . \mathrm{E}_{\max }=0.4 \mathrm{eV}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
$$
\]

\hline \& 4 \& Aspect corpuscular of light \& 0.25

\hline \multirow{5}{*}{2} \& 1 \& Since it has an external intervention (bombarded by a neutron) \& 0.25

\hline \& 2 \& Thermal neutron or slow neutron or $\mathrm{KE} \approx 0.025 \mathrm{eV}$ \& 0.25

\hline \& 3 \& Law of conservation of mass number: $\mathrm{x}=138$ \& 0.5

\hline \& 4 \& Kinetic energy of emitted nuclei, KE of emitted particles, energy of photons γ \& 0.5

\hline \& 5 \& $$
\begin{aligned}
& \mathrm{E}_{\text {elect }}=\mathrm{P} \times \mathrm{t}=600 \times 10^{6} \times 24 \times 3600=5.184 \times 10^{13} \mathrm{~J} \\
& \text { efficiency }=\frac{\mathrm{E}_{\text {elecectrique }}}{\mathrm{E}_{\text {nucleaire }}} ; \mathrm{E}_{\text {nuclear }}=\mathrm{E}_{\text {elect }} \frac{100}{40}=1.296 \times 10^{14} \mathrm{~J} \\
& \mathrm{~m}\left({ }_{92}^{235} \mathrm{U}\right)=234.99342 \mathrm{u}=234.99342 \times 1,66 \times 10^{-27} \mathrm{~kg}=3.90 \times 10^{-25} \mathrm{~kg} \\
& 200 \mathrm{MeV}=200 \times 1,6 \times 10^{-13} \mathrm{~J}=3.20 \times 10^{-11} \mathrm{~J} \\
& \mathrm{~m}_{\text {totale }}=\frac{1.296 \times 10^{14} \times 3.90 \times 10^{-25}}{3.20 \times 10^{-11}}=1.58 \mathrm{~kg}
\end{aligned}
$$ \& 1.25

\hline
\end{tabular}

Exercise 3 : Determination of the mass of a block and the stiffness of a spring			
Question		Answer	Mark
1-1		Weight $m_{A} \vec{g}$ of (A), normal reaction \vec{N}_{A} on (A), Weight $m_{B} \vec{g}$ de (B), normal reaction \vec{N}_{B} on (B).	0.5
1-2		$\Sigma \vec{F}_{\text {ext }}=\frac{d \vec{P}}{d t}$, then $m_{A} \vec{g}+\vec{N}_{A}+m_{B} \vec{g}+\vec{N}_{B}=\overrightarrow{0}=\frac{d \vec{P}}{d t}$, The linear momentum of the system (A, B, spring) is conserved.	0.75
1	$3{ }^{1}$	$\begin{aligned} & \overrightarrow{\mathrm{P}}_{\text {initial }}=\overrightarrow{\mathrm{P}}_{\text {final }} \text {, then } \overrightarrow{0}=\overrightarrow{\mathrm{P}}_{\mathrm{A}}+\overrightarrow{\mathrm{P}}_{\mathrm{B}}, \quad \overrightarrow{\mathrm{P}}_{\mathrm{A}}=-\overrightarrow{\mathrm{P}}_{\mathrm{B}} \\ & \overrightarrow{\mathrm{P}}_{\mathrm{A}}=-\mathrm{m}_{\mathrm{B}} \vec{V}_{\mathrm{B}}=-0.8 \times 0.75 \vec{\imath}=-0.6 \vec{\imath}(\mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}) \end{aligned}$	1
	2	$\overrightarrow{\mathrm{P}}_{\mathrm{A}}=\mathrm{m}_{\mathrm{A}} \overrightarrow{\mathrm{V}}_{\mathrm{A}}, \quad \vec{V}_{\mathrm{A}}=-\frac{0.6}{\mathrm{~m}_{\mathrm{A}}} \vec{\imath}(\mathrm{m} / \mathrm{s})$.	0.5
	4	Let F the maximum point reached by (A) $\begin{aligned} & M E_{1}=M E_{2}, \frac{1}{2} m_{A} V_{A}^{2}+m_{A} g h_{A} \frac{1}{2} m_{A} \frac{V_{F}^{2}+m_{A}}{} g h_{\max } \\ & \frac{1}{2} m_{A} V_{A}^{2}=m_{A} g h_{\max }, V_{A}=\sqrt{2 \times g \times h_{\max }}=\sqrt{2 \times 10 \times 0.05}=1 \mathrm{~m} / \mathrm{s} \end{aligned}$	1.25
		$\mathrm{V}_{\mathrm{A}}=\frac{0.6}{\mathrm{~m}_{\mathrm{A}}}=1$, then $\mathrm{m}_{\mathrm{A}}=0.6 \mathrm{~kg}$.	0.5
2	2-1	Graphically $\mathrm{V}_{\text {max }}=1 \mathrm{~m} / \mathrm{s}$ $\mathrm{KE}_{\text {max }}=1 / 2 \mathrm{~m}_{\mathrm{B}} \mathrm{V}_{\text {max }}^{2}=0.4 \mathrm{~J}$	0.75
	2-2	The mechanical energy of the system is conserved: $\mathrm{PE}_{\max }=\mathrm{KE}_{\max }=0.4 \mathrm{~J}$	0.5
	2-3	$\mathrm{X}_{\text {max }}=10 \mathrm{~cm}$	0.5
	2-4	$1 / 2 \mathrm{k} \mathrm{X} \mathrm{max}^{2}=0.4$ then $\mathrm{k}=80 \mathrm{~N} / \mathrm{m}$	0.75

